
 C
O

M
P 310 - Joseph V

ybihal 2006

1

Comp 310
Computer Systems and

Organization

Lecture #10
Process Management

(CPU Scheduling & Synchronization)

Prof. Joseph Vybihal

 C
O

M
P 310 - Joseph V

ybihal 2006

2

Announcements

• Oct 16 Midterm exam (in class)
– In class review Oct 14 (½ class review)
– Tutorials: TBA

 C
O

M
P 310 - Joseph V

ybihal 2006

3

Basic OS Architecture
(Course Table of Contents)

User Interface

Memory Manager

Process Manager

Network Manager

Hardware Manager

Disk / Storage Manager

Phase 1

Phase 2

Phase 3

Security Phase 4

 C
O

M
P 310 - Joseph V

ybihal 2006

4

Part 1

Types of CPU Scheduling

 C
O

M
P 310 - Joseph V

ybihal 2006

5

Sample Architectures
(a) Single-user Single-Process Execution

Ready Ptr

PCB

CPU

I/O Interrupt (go to OS)

O/S Interrupt (go to OS)

Terminated

(b) Single-user Multi-process Execution

Ready Queue CPU

Wait Queue

(FIFO, PRIORITY
 SORTED)

I/O or O/S Interrupt (go to OS)

Terminated

 C
O

M
P 310 - Joseph V

ybihal 2006

6

(c) Multi-tasking Execution & Multi-user (Ready queue = multilevel)

Ready Queue CPU

Wait Queue

(FIFO, PRIORITY
 SORTED)

I/O & O/S Interrupt (go to OS)

Terminated

Quantum interrupt

(d) Multi-user Multi-tasking Multi-Processor Execution (Multilevel ready queue)

Load Balance
 Queue

Ready Queue 1

Ready Queue 2

CPU 1

CPU 2

Terminated

Terminated

Wait Queue

Quantum Interrupt

I/O Interrupt

 C
O

M
P 310 - Joseph V

ybihal 2006

7

Solaris 2 Dispatch Table

High
priority

New priorities

 C
O

M
P 310 - Joseph V

ybihal 2006

8

Solaris 2 Scheduling

 C
O

M
P 310 - Joseph V

ybihal 2006

9

Windows XP Scheduling

Standard priority sorted FIFO/RR queue

 C
O

M
P 310 - Joseph V

ybihal 2006

10

Linux (POSIX Standard)

Dispatcher CPU

Wait Queue

(32 Level Priority
 Queue)

I/O Interrupt

Terminated

Quantum interrupt + others (but not Kernel proc.)

Real-time Q

Multi-tasking Q

Real-time = Fixed priority queue (FIFO & RR)

Multi-tasking = Highest Credit System

 Credit = (Credit / 2) + Priority

Quantum Interrupt = -1 to Credit per Q until 0 then get next
 process from Queue. When all Credits 0
 then recalculate based on Credit formula.

 C
O

M
P 310 - Joseph V

ybihal 2006

11

The Dispatch Latency Issue

Conflict Phase:
• Pre-empt running
 process
• Release resources
 held by lower
 priority Pi

Hard real-time:
Switch <= fixed T
Soft real-time:
Switch to higher priority

 C
O

M
P 310 - Joseph V

ybihal 2006

12

Little’s Formula
• N = λ x W
• Where:

– N is the length of the queue
– λ is the average arrival rate of a new process

• 3 processes per second
– W is average queue waiting time

• Is the system in a steady state?

e.g. if W = 5 sec and λ = 3/sec
Then by the time Pi exists the queue 15 new
processes have entered the queue

 C
O

M
P 310 - Joseph V

ybihal 2006

13

Part 2

Process Synchronization
(Accessing Resources)

 C
O

M
P 310 - Joseph V

ybihal 2006

14

The Issue

A
Resource

P1

P2 Who gets to use it?

Problem: If P1 loses quanta while using resource, then what?

 C
O

M
P 310 - Joseph V

ybihal 2006

15

What resources?

• Algorithmic
– Variables and data structures used to manage

by OS

• Physical
– Files, disk drives, printers, etc.

 C
O

M
P 310 - Joseph V

ybihal 2006

16

Example

while(1) {
 while (ctr = = BUF_SIZE);
 buf[in] = nextValue;
 in = (in + 1) % BUF_SIZE;
 ctr++;
}

while (1) {
 while (ctr = = 0);
 nextValue = buf[out];
 out = (out + 1) %
BUF_SIZE;
 ctr--;
}

Concurrent modification of shared variable ctr!

Producer Consumer

The resource

ctr++ in assembler:
move reg, ctr
incr reg
move ctr, reg

ctr-- in assembler:
move reg, ctr
decr reg
move ctr, reg

NOTE:

 C
O

M
P 310 - Joseph V

ybihal 2006

17

CTR starts at 5 and producer creates 1 while consumer uses 1, should stay as 5
T0: producer - move reg, ctr { reg = 5 }
T1: producer - incr reg { reg = 6 }
T2: Task switch
T3: consumer- move reg, ctr { reg = 5 }
T4: consumer- decr reg { reg = 4 }
T5: task switch
T6: producer - move ctr, reg { ctr = 6 }
T7: Task switch
T8: consumer- move ctr, reg { ctr = 4 }

How can we control this!

In Concurrent mode this is possible:

 C
O

M
P 310 - Joseph V

ybihal 2006

18

The Critical Section Problem

 do {
initial code;

critical section;

remaining code;
 } while (1);

Entry section

Exit section

A shared resource

Does not use shared
resources

Entry & Exit code guard the critical section:
• Mutual Exclusion: Only 1 Pi can be in the critical section (regardless of quanta)
• Progress: Entry queues requests to use critical section
• Bounded Waiting: Indefinite postponement is not permitted

 C
O

M
P 310 - Joseph V

ybihal 2006

19

The 2 Process Solution
 do {

initial section;

critical section;

remaining section;
 } while(1);

 flag[i] = true; // indicates i wants to enter
 turn = j; // does j want to enter?
 while (flag[j] && turn == j); // controls who enters

 flag[i] = false; // I’m done, says Pi

THIS IS PROCESS Pi

Shared vars

 C
O

M
P 310 - Joseph V

ybihal 2006

20

Multi-process Solution

THE BANKER’S ALGORITHM FOR Pi

 do {
initial section;

critical section;

remainder section;
 } while(1);

 choosing[i] = true; i wants a waiting number
 number[i] = max(num[0], num[1],…, num[n-1])+1; bigger num
 choosing[i] = false;
 for(j=0; j < n; j++) { FIFO ACCESS
 while (choosing[j]); Wait if someone getting a number
 while (num[j]!=0 && num[j]<= num[i] && j<i);
}

shared

Don’t want to go in

 number[i] = 0;

 C
O

M
P 310 - Joseph V

ybihal 2006

21

Hardware Solution: Atomic Instructions

ONLY one program can execute this instruction at any “clock
tick”. It executes in one CPU operation.

 boolean TestAndSet(boolean *target)
 {

boolean rv = *target;
*target = true;
return rv;

 }
 void Swap(boolean *a, boolean *b)
 {

boolean temp = *a;
*a = *b;
*b = temp;

 }

 C
O

M
P 310 - Joseph V

ybihal 2006

22

Mutual-Exclusion Examples
 do {

initial section;

critical section;

remainder section;
 } while(1);

Common Structures:
• lock

while (TestAndSet(lock));

lock = false;

 do {
initial section;

critical section;

remainder section;
 } while(1);

Common Structures:
• waiting[n]
• lock

 key = true;
 while (key == true)

Swap(lock, key);

lock = false;

 C
O

M
P 310 - Joseph V

ybihal 2006

23

Bounded-waiting with TestAndSet

 C
O

M
P 310 - Joseph V

ybihal 2006

24

Part 3

Semaphores

 C
O

M
P 310 - Joseph V

ybihal 2006

25

Basic Definition
wait(S) { signal(S) {

while (S < 0); // spinlock S++;
S--; }

}

S is a shared integer variable initialized to 1.

Controls # who can get past

 do {
initial code;

critical section;

remaining code;
 } while (1);

wait(mutex);

signal(mutex);

 C
O

M
P 310 - Joseph V

ybihal 2006

26

Problems to avoid
• Deadlock

– Pi has resource Q and wants resource R
– Pj has resource R and wants resource Q

• Indefinite Postponement (starvation)
– Deadlock forever

 C
O

M
P 310 - Joseph V

ybihal 2006

27

Practical Uses
• Memory Buffers (Bounding Buffer problem)

• Shared Files / Vars (Readers & Writers Problem)

• Limited Resources Many Processes
(Dining Philosophers Problem

(Next class)

 C
O

M
P 310 - Joseph V

ybihal 2006

28

Part 4

Monitors

 C
O

M
P 310 - Joseph V

ybihal 2006

29

Semaphore Queue Implementation
typedef struct {

int val; // val=1 to start
struct PROCESS *q;

} semaphore;

void wait(semaphore S) { void signal(semaphore S) {
S.val--; S.val++;

if (S.val < 0) // must wait if (S.val <= 0)
{ { // give access
 tail(process,q); p = head(q);
 block(); // sleep wakeup(p);
} }

}

 C
O

M
P 310 - Joseph V

ybihal 2006

30

Abstract View

One process it reduces to a standard semaphore.

 C
O

M
P 310 - Joseph V

ybihal 2006

31

Question

• How could we implement a monitor using
object?

 C
O

M
P 310 - Joseph V

ybihal 2006

32

Part 5

At Home

 C
O

M
P 310 - Joseph V

ybihal 2006

33

Things to try out
• Try to implement a two process

synchronization problem using C.

2. Web Resources (Monitors & Threads):
1. http://msdn2.microsoft.com/en-us/library/aa645740(vs.71).aspx

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

