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Comp 310
Computer Systems and 

Organization

Lecture #10
Process Management

(CPU Scheduling & Synchronization)

Prof. Joseph Vybihal
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Announcements

• Oct 16 Midterm exam (in class)
– In class review Oct 14 (½ class review)
– Tutorials: TBA



 C
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Basic OS Architecture
(Course Table of Contents)

User Interface

Memory Manager

Process Manager

Network Manager

Hardware Manager

Disk / Storage Manager

Phase 1

Phase 2

Phase 3

Security Phase 4
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Part 1

Types of CPU Scheduling



 C
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Sample Architectures
(a) Single-user Single-Process Execution

Ready Ptr

PCB

CPU

I/O Interrupt (go to OS)

O/S Interrupt (go to OS)

Terminated

(b) Single-user Multi-process Execution

Ready Queue CPU

Wait Queue

(FIFO, PRIORITY
  SORTED)

I/O or O/S Interrupt (go to OS)

Terminated
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(c) Multi-tasking Execution & Multi-user (Ready queue = multilevel)

Ready Queue CPU

Wait Queue

(FIFO, PRIORITY
  SORTED)

I/O & O/S Interrupt (go to OS)

Terminated

Quantum interrupt

(d) Multi-user Multi-tasking Multi-Processor Execution (Multilevel ready queue)

Load Balance
 Queue

Ready Queue 1

Ready Queue 2

CPU 1

CPU 2

Terminated

Terminated

Wait Queue

Quantum Interrupt

I/O Interrupt
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Solaris 2 Dispatch Table

High
priority

New priorities



 C
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Solaris 2 Scheduling



 C
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Windows XP Scheduling

Standard priority sorted FIFO/RR queue



 C
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Linux (POSIX Standard)

Dispatcher CPU

Wait Queue

(32 Level Priority
   Queue)

I/O Interrupt

Terminated

Quantum interrupt + others (but not Kernel proc.)

Real-time Q

Multi-tasking Q

Real-time = Fixed priority queue (FIFO & RR)

Multi-tasking = Highest Credit System

     Credit = ( Credit / 2) + Priority

Quantum Interrupt = -1 to Credit per Q until 0 then get next
                                  process from Queue.  When all Credits 0
                                  then recalculate based on Credit formula.
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The Dispatch Latency Issue

Conflict Phase:
• Pre-empt running
   process
• Release resources
   held by lower
   priority Pi

Hard real-time: 
Switch <= fixed T
Soft real-time:
Switch to higher priority
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Little’s Formula
• N = λ x W
• Where:

– N is the length of the queue
– λ is the average arrival rate of a new process

• 3 processes per second
– W is average queue waiting time

• Is the system in a steady state?

e.g. if W = 5 sec and λ = 3/sec
Then by the time Pi exists the queue 15 new
processes have entered the queue
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Part 2

Process Synchronization
(Accessing Resources)



 C
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The Issue

A
Resource

P1

P2 Who gets to use it?

Problem: If P1 loses quanta while using resource, then what?



 C
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What resources?

• Algorithmic
– Variables and data structures used to manage 

by OS

• Physical
– Files, disk drives, printers, etc.
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Example

while(1) {
   while (ctr = = BUF_SIZE);
   buf[in] = nextValue;
   in = (in + 1) % BUF_SIZE;
   ctr++;
}

while (1) {
   while (ctr = = 0);
   nextValue = buf[out];
   out = (out + 1) % 
BUF_SIZE;
   ctr--;
}

Concurrent modification of shared variable ctr!

Producer Consumer

The resource

ctr++ in assembler:
move reg, ctr
incr reg
move ctr, reg

ctr-- in assembler:
move reg, ctr
decr reg
move ctr, reg

NOTE:
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CTR starts at 5 and producer creates 1 while consumer uses 1, should stay as 5
T0: producer  - move reg, ctr       { reg = 5 }
T1: producer - incr reg                 { reg = 6 }
T2: Task switch
T3: consumer- move reg, ctr        { reg = 5 }
T4: consumer- decr reg                { reg = 4 }
T5: task switch
T6: producer - move ctr, reg        { ctr  = 6 }
T7: Task switch
T8: consumer- move ctr, reg        { ctr  = 4 }

How can we control this!

In Concurrent mode this is possible:



 C
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The Critical Section Problem

 do {
initial code;

critical section;

remaining code;
 } while (1);

Entry section

Exit section

A shared resource

Does not use shared
resources

Entry & Exit code guard the critical section:
• Mutual Exclusion: Only 1 Pi can be in the critical section (regardless of quanta)
• Progress: Entry queues requests to use critical section
• Bounded Waiting: Indefinite postponement is not permitted



 C
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The 2 Process Solution
 do {

initial section;

critical section;

remaining section;
 } while(1);

 flag[i] = true;         // indicates i wants to enter
 turn = j;                 // does j want to enter?
 while (flag[j] && turn == j);     // controls who enters

 flag[i] = false;        // I’m done, says Pi

THIS IS PROCESS Pi

Shared vars



 C
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Multi-process Solution

THE BANKER’S ALGORITHM FOR Pi

 do {
initial section;

critical section;

remainder section;
 } while(1);

 choosing[i] = true;        i wants a waiting number
 number[i] = max(num[0], num[1],…, num[n-1])+1;   bigger num
 choosing[i] = false;
 for(j=0; j < n; j++) {    FIFO ACCESS
    while (choosing[j]);  Wait if someone getting a number
    while (num[j]!=0 && num[j]<= num[i] && j<i);
}

shared

Don’t want to go in

 number[i] = 0;
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Hardware Solution: Atomic Instructions

ONLY one program can execute this instruction at any “clock 
tick”.  It executes in one CPU operation.

 boolean TestAndSet(boolean *target)
 {

boolean rv = *target;
*target = true;
return rv;

 }
 void Swap(boolean *a, boolean *b)
 {

boolean temp = *a;
*a = *b;
*b = temp;

 }



 C
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Mutual-Exclusion Examples
 do {

initial section;

critical section;

remainder section;
 } while(1);

Common Structures:
• lock

while (TestAndSet(lock));

lock = false;

 do {
initial section;

critical section;

remainder section;
 } while(1);

Common Structures:
• waiting[n]
• lock

 key = true;
 while (key == true)

Swap(lock, key);

lock = false;



 C
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Bounded-waiting with TestAndSet



 C
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Part 3

Semaphores



 C
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Basic Definition
wait(S) { signal(S) {

while (S < 0); // spinlock S++;
S--; }

}

S is a shared integer variable initialized to 1.

Controls # who can get past

 do {
initial code;

critical section;

remaining code;
 } while (1);

wait(mutex);

signal(mutex);



 C
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Problems to avoid
• Deadlock

– Pi has resource Q and wants resource R
– Pj has resource R and wants resource Q

• Indefinite Postponement (starvation)
– Deadlock forever



 C
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Practical Uses
• Memory Buffers (Bounding Buffer problem)

• Shared Files / Vars (Readers & Writers Problem)

• Limited Resources Many Processes 
(Dining Philosophers Problem

(Next class)



 C
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Part 4

Monitors



 C
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Semaphore Queue Implementation
typedef struct {

int val; // val=1 to start
struct PROCESS *q;

} semaphore;

void wait(semaphore S) {    void signal(semaphore S) {
S.val--;       S.val++;

if (S.val < 0) // must wait             if (S.val <= 0)
{       { // give access
    tail(process,q); p = head(q);
    block(); // sleep wakeup(p);
}       }

}



 C
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Abstract View

One process it reduces to a standard semaphore.
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Question

• How could we implement a monitor using 
object?



 C
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Part 5

At Home



 C
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Things to try out
• Try to implement a two process 

synchronization problem using C.

2. Web Resources (Monitors & Threads):
1. http://msdn2.microsoft.com/en-us/library/aa645740(vs.71).aspx
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