
 C
O

M
P 310 - Joseph V

ybihal 2006

1

Comp 310
Computer Systems and

Organization

Lecture #5
The Process and Communication

Prof. Joseph Vybihal

 C
O

M
P 310 - Joseph V

ybihal 2006

2

Announcements

• Assignment #1 out, did you see it?
• Unix tutorial Monday & Tuesday

 C
O

M
P 310 - Joseph V

ybihal 2006

3

Basic OS Architecture
(Course Table of Contents)

User Interface

Memory Manager

Process Manager

Network Manager

Hardware Manager

Disk / Storage Manager

Phase 1

Phase 2

Phase 3

Security Phase 4

Process inter-comm.
Management
Scheduling
CPU Sharing

 C
O

M
P 310 - Joseph V

ybihal 2006

4

Part 1

The Process Concept

 C
O

M
P 310 - Joseph V

ybihal 2006

5

Process Vs Program

code

Static
data

code

Static
data

Dynamic
data

Program
(HDD)

Process
(RAM)

Stack

Heap

execution

Loader

What is a loader?
Made from text or code?

 C
O

M
P 310 - Joseph V

ybihal 2006

6

Process Types

ON DISK

Loader Code

Program

Static Data

IN RAM

Heap
Dynamic Data

Run-time
Stack

Local Data

Program

Static Data

Passive

Dynamic

DLL

Program

A Dynamic Link Library

Shared Code

A ProcessA Program

• Loaded when called
• Managed by OS
• Shared with all Pi

(same on disk and RAM)
- needs parent program for dynamic
 memory to be able to execute

Static Libraries?
OS Libraries?
OS Drivers?

Static Data

 C
O

M
P 310 - Joseph V

ybihal 2006

7

Processes need to communicate
(Motivation)RAM

HDD

word

P1

A program

A process

OS

P2

Printer or
network

DB

• Take advantage of libraries
• Share devices
• Share data
• Work together on a common problem

text
Programmer version (how could we do that in C?)

 C
O

M
P 310 - Joseph V

ybihal 2006

8

Part 2

Process to OS Communication

 C
O

M
P 310 - Joseph V

ybihal 2006

9

Types of Process Communication
• No process communication

– direct assembler, or
– programming libraries

• Process using OS Services (e.g. malloc)
• Process using OS to connect to peripheral drivers

– Printers
– Network

• Process using OS to talk to other process
• Process using OS to share data

 C
O

M
P 310 - Joseph V

ybihal 2006

10

System Calls
Process to OS Communication

• Provide the interface between a process and the OS.
• C, C++ and Perl are examples of languages that have

functions that trigger the assembler system calls.
• Window’s Win32 API interface contain these systems calls

available to all programming languages.

OS
Kernel

UI Fn. Lib Public System Calls

Accessible by:
• Command-line commands
• Function calls

 C
O

M
P 310 - Joseph V

ybihal 2006

11

System Calls
System Call Run-time Environment

ID Addres

13 X002A

System Call

System Call Table

When the assembler command issues system call 13 the jump to address x where
the code exists for system call 13 is contained in the System Call Table, created
when the OS initially loads and is updated as the computer operates.

How do you build this in code?

Shared register

 C
O

M
P 310 - Joseph V

ybihal 2006

12

Hidden System Calls
Language Library System Call Example

 printf(“Hi”);
Process looses control of CPU

Control is
returned to
process

• assembler: syscall x
• get address for index x from sys table
• jump to OS routine
• put process to sleep? (optional)

Executing Program

System call x to draw on screen

Executing OS

How do you build this in code?

 C
O

M
P 310 - Joseph V

ybihal 2006

13

Memory Sharing
Process to Process Communication

Message Passing Shared Memory
• Issue a system call
• Data and Process ID
• OS manages
• Function call and return
• Controlled

• At process load, OS assigned share space
• Independent of OS
• Variable names to the same space
• Conflicts

How do you build this in code?

 C
O

M
P 310 - Joseph V

ybihal 2006

14

Unix Command-line Pipes
• Command-line: $ ls | more
• Implementation:

– ASCII Streams
• OS controlled streams
• Stdin
• Stdout

– Buffers
• Arrays
• Temp files

 C
O

M
P 310 - Joseph V

ybihal 2006

15

Unix Programming Pipes
#include <stdio.h> /* standard I/O routines. */
#include <unistd.h> /* defines pipe(), amongst other things. */

void do_child(int data_pipe[]) {/* this routine handles the work of the child process. */
 int c; /* data received from the parent. */
 int rc; /* return status of read(). */

 /* first, close the un-needed write-part of the pipe. */
 close(data_pipe[1]);

 /* now enter a loop of reading data from the pipe, and printing it */
 while ((rc = read(data_pipe[0], &c, 1)) > 0) {

putchar(c);
 }

 /* probably pipe was broken, or got EOF via the pipe. */
 exit(0);
}

 C
O

M
P 310 - Joseph V

ybihal 2006

16

void do_parent(int data_pipe[]) {/* this routine handles the work of the parent process. */
 int c; /* data received from the user. */
 int rc; /* return status of getchar(). */

 /* first, close the un-needed read-part of the pipe. */
 close(data_pipe[0]);

 /* now enter a loop of read user input, and writing it to the pipe. */
 while ((c = getchar()) > 0) {

/* write the character to the pipe. */
 rc = write(data_pipe[1], &c, 1);
if (rc == -1) { /* write failed - notify the user and exit */
 perror("Parent: write");
 close(data_pipe[1]);
 exit(1);

 }
 }

 /* probably got EOF from the user. */
 close(data_pipe[1]); /* close the pipe, to let the child know we're done. */
 exit(0);
}

 C
O

M
P 310 - Joseph V

ybihal 2006

17

int main(int argc, char* argv[]) {/* and the main function. */
 int data_pipe[2]; /* an array to store the file descriptors of the pipe. */
 int pid; /* pid of child process, or 0, as returned via fork. */
 int rc; /* stores return values of various routines. */

 /* first, create a pipe. */
 rc = pipe(data_pipe);
 if (rc == -1) {

perror("pipe");
exit(1);

 }

 /* now fork off a child process, and set their handling routines. */
 pid = fork();

 switch (pid) {
case -1: /* fork failed. */
 perror("fork");
 exit(1);
case 0: /* inside child process. */
 do_child(data_pipe);
 /* NOT REACHED */
default: /* inside parent process. */
 do_parent(data_pipe);
 /* NOT REACHED */

 }

 return 0; /* NOT REACHED */
}

How is data_pipe implemented?
What is fork?

 C
O

M
P 310 - Joseph V

ybihal 2006

18

Virtual Machines
(Communication between machines)

Standard OS Machine Virtual Machine

Machine Kernel

Specific kernels
& IDs

• Bottle-necks: File Systems, CPU (any shared resource)
• Benefits: Can run favorite applications
• The OS kernels are also now processes scheduled by the Machine Kernel

Syscall x

Pseudo or real...

 C
O

M
P 310 - Joseph V

ybihal 2006

19

Part 3

Process Management

 C
O

M
P 310 - Joseph V

ybihal 2006

20

Process State
• Load from disk
• Create process
• Create PCB

• Put in queue
• PCB set quanta

• Free RAM
• Delete PCB
• Free buffers

• Ready: is the run-time process queue. Each link is a PCB
• Waiting: is the sleep list. Not really a queue. PCBs on this list
 wait for their OS request to end.

• runs for a quanta, or
• interrupt, or
• OS request

 C
O

M
P 310 - Joseph V

ybihal 2006

21

The Process Control Block
(PCB)

• The process is known by its ID number
• A pointer points to the beginning of the process
• An integer counter indicates which byte is currently
 being executed
• A space is reserved to store the registers for the
 process switch

Process Run-Time Queue (linked list or circular array)

NULL

Current Process Pointer

 C
O

M
P 310 - Joseph V

ybihal 2006

22

Process Execution Simulation

“The context switch”

 C
O

M
P 310 - Joseph V

ybihal 2006

23

Threads
• By definition: Execution path through code
• What if…

– Two users share the same MSWORD application at the same time but
with different documents - how many threads? How many processes?

• 2 threads!
– What properties do threads then have?

• Represent a chain of execution, regardless of code source
• Each thread has its own PCB on the process run-time queue (even if

PCB pointer points to the same code source)

• Other threads:
– Spawn your own
– Event Processing

Discuss...

 C
O

M
P 310 - Joseph V

ybihal 2006

24

Part 4

Process Scheduling

 C
O

M
P 310 - Joseph V

ybihal 2006

25

Deeper Schedules
(Mid-level Scheduler)

Did not have time to execute… Or system load too heavy…
Therefore, swap out of ready queue, put on Overload Queue.

 C
O

M
P 310 - Joseph V

ybihal 2006

26

Process Scheduling

This could be many queues

Load
dispatch terminate

“queue”

Pseudo-code and assembler discussion...

 C
O

M
P 310 - Joseph V

ybihal 2006

27

Multiple OS Run-Time Queues

Ready Head
Ready Tail
Disk Head
Disk Tail
Printer Head
Printer Tail
Network Head
Network Tail

Queue Headers
PCB PCB PCB

NULL

PCBPCB

NULL

NULL

PCB NULL

This is a double nested loop:
• For each queue
• Execute next PCB

May have their
own CPUs

Step
1

Step 2

 C
O

M
P 310 - Joseph V

ybihal 2006

28

Part 5

At Home

 C
O

M
P 310 - Joseph V

ybihal 2006

29

Things to try out
1. If we did not have system calls, what

would be an alternative way of providing
the services that system calls provide?

2. Find out how the printer queue on your
home computer or laptop functions.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

