
304−426A Microprocessor Systems Fall 2009

Lab 1: Assembly and Embedded C

Objective 
This exercise introduces the Texas Instrument MSP430 assembly language, the concept of the 
calling convention and different addressing modes (register, indexed, absolute addressing, etc), 
as well as the use of embedded C programming. It will also introduce you to the CrossWorks 
cross-compiler and MSP430 core simulator.

The lab consists of two components:
Part A: Assembly language exercise
Part B: Embedded C exercise

Background
Calling convention
In assembly, parameters for a subroutine are passed on the memory stack and in registers. In the 
MSP430, the scratch registers are R15:R12. Parameters are placed in these registers in reverse 
order (i.e. the first parameter in the C-function is placed in R15). If the parameters require more 
than  16  bits,  then  multiple  registers  are  used.  If  there  are  no  free  scratch  registers,  or  the 
parameter requires more registers than remain, then the parameter is pushed onto the stack. For 
comprehensive examples, do a search for “calling convention” in CrossWorks.

This particular order of passing parameters is a  convention by CrossWorks; it is not mandatory 
and may differ among vendors of compilers. 

CrossWorks compiler
When compiling your assembly code, CrossWorks will generate .hzo and .hzx files. The former is 
your object file and the latter is the image file. The object file is used by the simulator. The image 
file can be converted to a specific format supported by different  processors. For example,  to 
prepare a Texas Instruments hex format:

(1) Select project in Project Explorer.
(2) In the Linker Options group set Additional Output Format to hex.

CrossWorks simulator
The CrossWorks simulator tries to model the processes that take place on the target chip.
A quick start to simulate compiled or linked files:

o Choose Target, then select ‘3 Connect MSP430 Core Simulator’.
o To run the simulation, choose Debug, then select ‘Start Debugging’.

You will be able to inspect memory, program and modify registers while in simulation mode.



Part A 
Exercise
Write a subroutine in MSP430 assembly language that adds two seven-digit signed Binary Coded 
Decimal (BCD) numbers.

Your subroutine should expect R15 and R14 to contain the addresses of the BCD numbers to be 
added.  R14 should contain the address where the result of the subroutine should be written.

BCD Encoding
Binary Coded Decimal (BCD) data format represents decimal numbers using one nibble (4 bits) 
per digit. An unsigned 7-digit decimal number may be encoded in BCD format by 28 bits. For 
signed numbers,  an additional  sign bit  is  required.  Since it  is  best  to align the data to word 
boundaries, 32 bits will be used to accommodate the 29-bit long number. We can use any one of 
the 3 leftover bits as an overflow/underflow indication flag bit.

A 32-bit representation example is:
• Bit 31 (MSB) is the sign bit: '0' for '+value', '1' for '-value',
• Bit 30 is the overflow flag: '0' for 'not overflown', '1' for 'overflown',
• Bit 29,28 are don't care bits,
• Bit 27-0 are data magnitude bits.

So, for example, using 5-digit BCD numbers:

Decimal Number BCD (binary) BCD (hexdecimal)
25331 0000 0010 0101 0011 0011 0001 '$025331'

-90814 1000 1001 0000 1000 0001 0100 '$890814'

-45873 (overflown) 1100 0100 0101 1000 0111 0011 '$C45873'
-645873 (overflown) 1100 0100 0101 1000 0111 0011 '$C45873'

Please note that you will use two more digits, than with the above examples. 

As a first step, explore the processor instructions that can help in designing efficient BCD 
arithmetic.

Function Requirements

1. All registers’ contents and the stack position should be unaffected by the subroutine call 
upon returning.

2. The calling convention will obey that of the C compiler. Input registers contain pointers 
to 16-bit words.

3. The subroutine should leave operands untouched when it returns.
4. The subroutine should also leave the first operand *a1 (pointed to by address a1) 

unchanged, and replace the second operand with the sum.
5. The subroutine should be location independent. It should be able to run properly when it 

is placed in different memory locations.
6. The subroutine should not use any global variables. If necessary, use indexed addressing 

of stack positions.
7. The subroutine should be as fast as possible, but robust.

Test Samples



Be prepared to use your or TA-provided test samples exercising all the interesting cases. 

Demonstration

The demonstration involves showing your source code and demonstrating a working program. 
Your program will be placed at an arbitrary memory location. You should be able to call your 
subroutine several times consecutively. You should understand what every line in your code does 
– there will be questions in the demo. This includes the lines in the skeleton; ask if you do not 
know!

Part B

Exercise

In this part of the experiment, you will implement functions in embedded C that perform simple 
filtering  on  a  block  of  data.   In  the  exercise,  the  input  samples  will  have  a  fixed-point 
representation that will re-use the BCD encoding of Part A.

Finite Impulse Response (FIR) filter

A Finite Impulse Response filter is a digital filter which has a finite response to a finite input. 
Since its internal structure does not contain feedback elements, once the input is removed (set to 
zero), the filter's response ends when its memory elements are emptied.  In the following 
notation, the output of the filter is given by y[n] and the input given by the samples x[n].  The 
coefficients of the filter are given by bi .  The equation of the FIR filter is:

(1) y[n] = b0x[n] + b1x[n-1]+...+bNx[n-N]

For example, a small averaging filter would be:

y[n] = 1/3 x[n] + 1/3 x[n-1] + 1/3 x[n-2]

The coefficients for this filter would be [0.333..., 0.333..., 0.333...].

FIR filters are quite useful in digital signal conditioning.  It is possible, for example, to design 
FIR filters to remove a certain frequency of noise (notch filter) or do a low-pass or high-pass 
filter.

We will use a representation of the coefficients that takes into account the decimal position.  We 
will multiply coefficients by 1000.  Therefore, a coefficient of 0.333 would be represented as 333. 
The number N in the filter equation determines the order of the filter.  In this experiment, we will 
keep the order below 10 to save memory.  Thus we will be able to implement useful filters while 
keeping the processing overhead manageable.  

Suppose we have the following coefficients implementing a simple 10th order low-pass filter:
[-0.0449,  -0.0650, -0.0077, 0.1190, 0.2498, 0.3052, 0.2498, 0.1190, -0.0077,-0.0650, -0.0449]
where the leftmost coefficient is b0 and the rightmost is b10.



Those coefficients will be represented in our BCD form with the implicit multiplication by 1000 
as:
[-45,-65,-8,119, 250, 305, 119, -8, -65, -45]  You will notice that the numbers have been rounded.

Now lets consider the input to the system.  If we make a 1V input signal correspond to 1000 in 
our encoding, we would be able to input signals of up to about 1V without risking an overflow in 
the filter.

If we use equation 1, we see that y[n] will be scaled by 1000 due to the coefficients and that the 
result will be in millivolts (because we said that 1000 = 1V).

Lets try the simple averaging filter with the scaling applied (all the coefficients are 0.333). 
Assume the input is 0.5V and then shifts suddenly to 0.7V.  A sampling of the input values would 
be [0.5, 0.5, 0.5, 0.7, 0.7, 0.7].  Scaled up those will become [500,500,500,700,700,700]. 
Computing the outputs:
y[2] = 333*x[2] + 333*x[1] + 333*x[0] = 333*500 + 333*500 + 333*500 = 499500
y[3] = 333*x[3] + 333*x[2] + 333*x[1] = 333*700 + 333*500 + 333*500 = 566100
y[4] = 333*x[4] + 333*x[3] + 333*x[2] = 333*700 + 333*700 + 333*500 = 632700
y[5] = 333*x[5] + 333*x[4] + 333*x[3] = 333*700 + 333*700 + 333*700 = 699300

The resulting output needs to be divided by 1000*1000 to bring back the decimal point to the 
correct position.

Thus, the output of the filter (if brought back in volts) would be : [0.4995V, 0.5661V, 0.6327V, 
0.6993V].

As you can see, the abrupt step in the input has been smoothed out by the filtering process.  Note 
that for each sample produced by the filter, N+1 BCD multiplications and N+1 BCD additions 
are needed.

With the above conventions, its now possible to design a function that will take a series of 
samples and perform a digital filter on them to produce a filtered response.

Function Requirements

Design the following C functions:

void bcdmult( bcd32_t* arg_a, bcd32_t* arg_b, bcd32_t* result)
  Where arg_a and arg_b are the locations of the inputs and result is the address where the output should be 
written.  

The “bcdmult” function should call the “bcdadd” routine (written in assembly) repeatedly to perform the 
multiplication.  This function should be tested to see that it can multiply bcd32_t numbers properly and 
cover corner cases before proceeding to coding the “fir” function.

void fir(unsigned int filterOrder, bcd32_t* coeffs, bcd32_t* 
inputSamples, bcd32_t* outputValue)
Here: -FilterOrder is the order of the filter

-coeffs is a pointer to a table of bcd32_t numbers.  The first bcd32_t in the table is b0, the 
second is b1 and so on.

-inputSamples is a pointer in a table of bcd32_t numbers.  Those numbers represent the 



input samples to the filter.
-outputValue is a pointer to a free bcd32_t location that will hold the resulting output 
sample.

1. Use the Crossworks calling conventions for later inclusion into a C program.
2. Upon returning from subroutines, the registers and stack should be untouched.
3. The subroutines should be location independent. 

Useful Notes 

You may find it useful to separate your functions into separate files. This will definitely be the 
case for later experiments. The Assembler will be used to assemble each assembly file into a 
location independent object (.hzo) file. The Linker will then link these individual object files to 
produce a single absolute file (.hzx). 

For more information refer to help contents (CrossStudio for MSP430-> C compiler reference 
-> assembly language interface). Also, you can consult application notes, such as Mixing C and 
assembler with the MSP430 that is available on WebCT. Although the concepts are the same, 
please keep in mind that the calling convention and syntax in that document are that of the IAR 
compiler.

Some C code has been posted on WebCT to help you with this assignment.  Please have a look at 
it.  The code is written to be compiled and run on a PC with an ordinary C compiler.  However, if 
the  “printf”  statements  are  removed,  the  same  code  should  also  work  on  CrossStudio  for 
MSP430.

The Linker 

In large scale projects, where large programs are usually constructed by teams of programmers, it 
is necessary to separate the work into smaller units. These smaller pieces of code are composed 
and tested individually, and are joined together by the Linker program. 

When working with these individual pieces of code, it is important to keep them location 
independent. By postponing the decisions of memory allocation to later times, collisions in 
memory spaces among different programs can be avoided. Memory for code, data and stack will 
be allocated when the Linker generates the absolute file (.hzx). 

Code Sample

/*
// A Main Program to call the subroutines
/*

#include <msp430x14x.h>
#include "bcd.h" // declare bdc_t – could be just unsigned long or alike

void main(void){  // main neither has arguments nor returns anything 
  
// Test code here



}

// Comments explaining your bcdmult function 
void bcdmult( bcd32_t* arg_a, bcd32_t* arg_b, bcd32_t* result){
  // Local variables

  // Code here
}

// Comments explain your fir function.
void fir(unsigned int filterOrder, bcd32_t* coeffs, bcd32_t* inputSamples, bcd32_t* 
outputValue) {
  // Your code here...
}

// other functions come here, if needed
// other parameters interpreted as other data types
void other_functions((/*parameters … */) { // Your code

}

+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ (New file)
;bcd.h
; 
// You must include substantial, clear comments in all header files
// define all the types and routines that C program will use
// your comments here: functionality, inputs, outputs, error conditions
extern void bcdadd(int *c1, int *c2);  // function is coded in assembly 

// your comments
void bcdmult( bcd32_t* arg_a, bcd32_t* arg_b, bcd32_t* result);
void fir(unsigned int filterOrder, bcd32_t* coeffs, bcd32_t* inputSamples, bcd32_t* 
outputValue);

// your comments
void other_functions();// your code

++++++++++++++++++++++++++++++++++++++++++++++++++
;bcdadd.s43

; comments, purpose of code, inputs, outputs, errors.

     PUBLIC  bcdadd                  ; Declare symbol to be exported
     RSEG    CODE                    ; Code is relocatable
_bcdadd
           ;your BCD ADD assembly routine here (Part A)
     ret
     
     END

Demonstration

The demonstration includes showing your source code and demonstrating a working program. 
Your program should be capable of handling a variety of test cases  and should flag errors 
appropriately.

Report 

The report should concisely explain your solution to the problem given, including the bcdadd 
assembly routine of Part A. You should also explain with illustrations the way the subroutines are 
linked together and the memory organization that you used. All code should be well-documented.
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