
Chapter 5

Memory Hierarchy
Part 1

Slides: W. Gross, V. Hayward, T. Arbel

1

“Ideally one would desire an idefinitely large memory capacity such that
any particular…word would be immediately available…We are…forced to
recognize the possibility of constructing a hierarchy of memories, each
of which has greater capacity than the preceding but which is less
quickly accessible.”

A. W. Burks, H. H. Goldstine, and J. von Neumann, 1946

2

Introduction and Motivation

• Goal: unlimited amounts of fast memory.

3

Principle of Locality

• Why does it work?
– Principle of locality – nonuniform access
– Smaller memories are faster

• Problem: fast memory is expensive !
• Solution: hierarchy of memory organized

into different levels, each progressively
larger, but slower

4

Memory Hierarchy

• Requirements: (apparently contradictory)
– Provide virtually unlimited storage
– Allow the CPU to work at register speed

• Analogy with personal belongings:
– wear what you need for a day
– suitcase for a week
– house or apartment as permanent storage

5

Memory Hierarchy

6

Memory Hierarchy in 2003
Level 1

registers
2
cache

3
main
memory

4
disk storage

Typical size < 1 KB < 16 MB < 16 GB > 100 GB

Technology Multi-port
custom
CMOS
memory

On-
chip/off-
chipd
CMOS
SRAM

CMOS
DRAM

Magnetic disk

Bandwidth
(Mb/s)

20,000-
100,000

5000 -
10,000

1000 -
5000

20 - 150

Access time (ns) 0.25 – 0.5 0.5 - 25 80-250 5,000,000

Managed by compiler hardware OS OS/people

Next level cache main
memory

disk CD/tape/network

7

ABCs of Caches

• Cache is a buffer between CPU registers
and main memory

– Divided into blocks to take advantage of temporal and
spatial locality in programs

– Similarly, virtual memory divides a large address space
in pages stored in main memory

• Principle: keep in higher level storage a copy
of a subset of the next lower level.

– E.g. registers hold a copy of subset of blocks
– Blocks are a copy of a subset of the main memory,

etc…

8

ABCs…

• Every time an item is requested
– Hit: if found in next lower level
– Miss: if not found

• E.g.
– load or fetch found in cache => cache hit

• E.g.
– If cache loads a block and it is not found in main memory =>

page fault
– Page is retrieved from the disk

• If a hit …deliver data item
• If a miss…fetch the correct block from the lower

level of the hierarchy
– CPU must stall

9

CPU Performance with Caches

10

Miss Rate

• The measurement problem becomes finding
the miss rate

– the average number of misses per access

• Address trace
– A large sequential collection of addresses accessed by

a benchmarks and fed to a cache simulator

11

Reads / Writes

12

13

Four Memory Hierarchy Questions

• Caches: Main memory is divided into blocks each
consisting of several data elements (e.g. bytes)

1. Where can a block be placed in the upper level?
– Block placement

2. How is a block found if it is in the upper level?
– Block identification

3. Which block should be replaced on a miss?
– Block replacement

4. What happens on a write?
– Write strategy

14

Q1: Block Placement

• Fully associative
– A block can appear anywhere in the cache

• Direct mapped cache
– Each block can only appear in one place in the cache

» block address mod # blocks in cache
• Set associative

– A block can be placed in a restriced set of places in the
cache

– First, map a block onto a set
– The block can be placed anywhere in that set
– Set chosen by bit selection

» Block address mod # sets in cache
– n blocks in a set => n-way set associative

15

Block Placement

16

Associative Caches

• In general, m blocks in cache, n blocks in a set, s
sets in cache

m = s * n

• n-way set associative => n > 1 and s > 1
• fully associative => n = m and s = 1 (m-way s.a.)
• direct mapped => n = 1 and s = m (1-way s.a.)

• Mapping: set number is called “index”
• index = block # mod s

17

Real Caches

• Most processor caches today are
– Direct mapped, or
– 2-way set associative, or
– 4-way set associative

18

Q2: Block Identification

• How is a block found if it is in the cache ?
• Why is this an issue?

– Many blocks in main memory map to one or few blocks in cache

• A complete address in the address space of a addresses can
be divided into fields

– Each field has a significance in the hierarchy

• Each block contains d data items (bytes, words…). So a field
in the address called the “block offset” (lower-order bits)
indicates which of the d data items in a particular block we
want to access

• We then also need a field “block address” to indicate which
block number in memory we will access (higher-order bits).

19

Address Fields
address space

<log2 a>

<log2 d>

20

Search

• Now that we know which block to look for,
we need to identify which one of the s sets
the block could be in (s is called the
“index”)

• Now, the block could be anywhere in this
set, so we need to do a search within this
set to identify the particular block

– Search for the “tag”

21

Address Fields
address space

<log2 a>

<log2 d><log2 s>

22

Searching…

• Direct mapped
– No search
– Index directly provides block number in cache

• n-way set associative
– smaller index and a larger tag as n gets larger

• fully associative
– no index

• Tag check search is done in parallel for
speed – if the tag is found => a hit !

• How do we know if the cache block has been
loaded with valid data ?

– Add a “valid bit” to every block in the cache

23

Direct Mapped Cache

24

Q3: Block Replaement

• Which block should be replaced on a miss?

• Direct mapped
– no choice !

• Fully associative or set associative
– Many blocks to choose to replace

25

3 Replacement Strategies

1. Random
– Simple

2. Least-recently used (LRU)
– If recently used blocks are likely to be used again

(locality) then a good candidate for disposal is the
LRU block

– Record accesses to blocks

3. First in, first out (FIFO)
– Replace oldest block
– Approximation to LRU

26

Q4: Write Strategy

• Most cache accesses are reads
– Instruction accesses are reads
– MIPS: 10% stores, 37% loads
– Writes 7% of overall memory traffic
– Data cache only: writes are 21%

27

Reads / Writes

• Make common case fast
– Optimize caches for reads
– Reads are the easiest to make fast
– Read block at same time as tag check
– Only drawback to reading a block immediately is power
– Ahmdahl’s law: don’t neglect speed of writes

• Why writes so slow?
– Writes cannot begin until after tag check
– Writes can also be of variable width (as can reads, but

there is no harm in reading more, except power)

28

2 Write Strategies

1. Write through
– Write information to the block in the cache and to

the block in lower-level memory

2. Write back
– Write information only to block in the cache. Write

the modified cache block to the main memory only
when it is replaced

29

Write Back

• “Dirty bit” kept for each block
– Indicates whether the block is “dirty” (modified while

in the cache) or “clean” (not modified)
– Reduces frequency of write back

• Advantages:
– writes occur at speed of cache
– Multiple writes to a block require only one write to

main memory
– Some writes never make it to main memory

» Memory bandwidth reduced
» Lower power

30

Write Through

• Advantages:
– Simple, easier to implement

• Cache is always clean
– Read misses never result in writes to lower level

• Write stalls
– CPU must wait for writes to complete
– Use a write buffer

31

Write Misses

• Two strategies (used with both WB and WT)

• Write allocate
– Make write misses act like read misses
– Allocate the block in the cache then follow same steps as a

write hit
• No-write allocate

– A little weird- write misses do not write the cache
– Block is modified only in lower-level memory
– Blocks stay out of the cache until the program tries to read

the blocks

• Normally:
– Write back caches use write allocate (benefit from locality)
– Write through caches use “no write allocate” (avoid redundant

writes)

32

Example:
Alpha 21264
Data Cache

33

• 64 Kbytes
• 64-byte blocks
• 2-way set

associative
• Write back
• Write-allocate

on a write miss

2index = cache size / (block size * associativity) = # blocks / associativity

<3 msb>

Unified vs. Split Caches

• Instruction and data streams are different
– Instructions are fixed size, read-only, very local (except for

branches)
• Two caches: one optimized for instructions and one for

data
– Drawback: Fixed capacity is split between the two caches

• Split cache:

34

Chapter 5

Memory Hierarchy
Part 2

Slides: W. Gross, V. Hayward, T. Arbel

35

Cache Performance

• Miss rate is independent of the speed of
the hardware

• Better measure of mem. Hierarchy
performance is Average Memory Access
Time

AMAT = HitTime + MissRate x MissPenalty

36

AMAT and CPU Performance

CPUTime = IC x CPI x CCtime

• Assumes perfect memory hierarchy
performance (all accesses were hits)

• Pipeline: assumes all memory accesses
complete within one clock cycle

– Hit time < CCtime

• How to account for real memory hierarchy?

37

CPU Performance with Imperfect
Caches

38

Example

• UltraSparc III (in-order execution)
• Cache miss penalty = 100 cc
• Instructions: 1.0 cc (ignoring mem. stalls)
• Miss rate = 2%
• 1.5 mem ref/instructions on average
• Cache misses 30 misses /1000 instr.

• Q: what is the impact on performance when
the cache is considered?

39

Example

CPUTimecache = IC x (1.0+(30/1000) x 100) x CC
= IC x 4.00 x CC

• or use miss rate

CPUTimecache = IC x (1.0+(1.5 x 2% x 100)) x CC
= IC x 4.00 x CC

40

Cache Impact on Performance

• With low CPI (< 1) the relative impact of a
cache miss is higher

• With faster clocks, a fixed memory delay
yields more stall clock cycles

41

AMAT is not CPUtime !

• Example: 2 cache designs fitted to the
same CPU CPI = 2 with perfect cache
• Cycle time = 1.0 ns
• 1.5 mem refs / instruction

• Both caches are 64 KB and have block
sizes of 64 bytes, miss penalty = 75 ns

1. Direct mapped: 1ns hit time, mp = 75
cc,mr = 1.4%

2. 2-way set assoc.: 1.25 ns hit time (slows
down system clock), mp = 60 cc, mr = 1%

42

Example (in ns, not cc)

• AMAT is lower for 2-way
• CPU time is lower for 1-way !
• Why?
• 2-way stretches clock cycle for ALL

instructions even though there are fewer
misses!

– build the 1-way in this case

43

Out-of-Order Execution

• Miss penalty does not mean the same thing
– The machine does not totally stall on a cache miss
– Other instructions allowed to proceed

• What is MP for O-O-E?
– Full latency of the memory miss?
– The nonoverlapped latency when the CPU must stall ?

• Define:

44

Performance Summary

• Textbook Page 412 Figure 5.9 summarizes
all the performance equations (12 of them!)

• AMAT = HitTime + MissRate x MissPenalty

• Cache optimizations will be studied next
focussing on reducing hit time, miss rate
and miss penalty (analogy to CPU
performance equation)

45

Cache Optimizations

• Penalty reduction: multilevel caches, critical
word first, read priority over writes,
merging writes and victim caches

• Miss rate reduction: Block size, cache size,
associativity, pseudoassociativity, compiler
optimizations

• Parallelism: non-blocking caches, hardware
prefeteching, compiler prefetching

• Hit time reduction: cache size and
organization, address translation avoidance,
pipelined caches, trace caches (brief
coverage)

46

Reducing Miss Penalty – Multilevel
Caches

• Reduce penalty by adding a cache to the cache !
• Penalty at a given level is determined by the AMAT

of the next lower level
• E.g. penalty to replace a register is the load delay

47

Multilevel Caches

• For small miss rates:
• Small increase in hit time
• Huge reduction in miss penalty because

misses that go all the way to memory (global
misses) are rare (mr1 x mr2)

• L1 should be fast for a small hit time
• L1 usually on-chip to reduce interconnect

delays
• L2 should be bigger (typically off-chip) and

should have a more sophisticated
organization to reduce miss rate

48

Multilevel Exclusion

• What if a design cannot afford a L2 cache
that is much larger than L1

– Wastes most of L2 with redundant copies of what is in
L1?

• In this case use multilevel exclusion
– L1 data is never found in L2 cache
– L1 miss results in a swap instead of replacement

• AMD Athlon (2x64Kb L1 and 256 Kb L2)

49

Critical Word First and Early
Restart

• Observation: CPU normally needs just one
word of the block at a time

– Impatience! Don’t wait for whole block to be loaded
before sending the requested word and restarting the
CPU

• Critical word first – request the missed
word from memory and send it CPU as soon
as it arrives – CPU continues while rest of
block fills in

• Early restart – fetch the words in normal
order, but as soon as the requested word
arrives, send it to the CPU and let it
continue execution

50

Priority of Read Misses Over Writes

• Write buffers for write-through caches case RAW
hazards

• E.g. direct-mapped, assume 512 and 1024 mapped
to same block

SW R3, 512(R0) ; R3 in write buffer
LW R1, 1024(R0) ; miss, replace block
LW R2, 512(R0) ; miss

• If write buffer has not completed store then wrong
value written to cache block and R2

• Soln: on read miss, check write buffer for conflicts
and if memory system is available, let read miss
continue

51

Merging Write Buffer

• When writing to the write buffer, check if
address matches an existing write buffer
entry

– Combine data with that write – write merging
– Multiword writes are faster than one word at a time

52

Merging Write Buffer

53

Victim Caches

• Remember what was
discarded in case it is
needed again

• Small fully associative
cache between a cache
and its refill path

• AMD Athlon – 8 entry
victim cache

54

Miss Rate Reduction

• 3 kinds of misses

1. Compulsory – first access to a block cannot
be in cache

2. Capacity – cache cannot contain all blocks
needed during execution of a program

3. Conflict – for set-associative or direct
mapped – if too many blocks map to a set
– Hits in FA cache become misses in an n-way SA cache

if there are more than n requests to a popular set

55

56

Infinite cache FA

Compulsory small
Capacity misses require large caches

High associativity reduces conflicts

Tradeoffs

57

Larger blocks exploit spatial locality (but might increase MP)
compulsory misses

conflict and capacity misses

Other Techniques to Reduce Miss
Rate

• Larger caches
– Cost tradeoff
– Higher hit times

• Higher associativity
– Rule of thumb: Direct mapped cache of size N has about the

same miss rate as a 2-way set associative cache of size N/2
– Higher hit times (search)
– Way prediction: use extra bits to predict the next block in

the set that will be accessed (similar to branch prediction)

• Pseudoassociativity – cheap form of associativity for
direct mapped caches.

– On a miss a second entry is checked, say by inverting index
bits (‘pseudo-set’)

– One fast hit and one slower one

58

Compiler Optimizations

• Matrix and vector code can be written to have an
impact on cache performance – improve spatial locality

• Instead of going through arrays in whatever order the
programmer chose, operate on all the data in a cache
block

• Loop interchange: x[i][0] is contiguous with x[i][1]

59

60

61

Chapter 5

Memory Hierarchy
Part 3

Slides: W. Gross, V. Hayward, T. Arbel

62

63

64

65

66

67

68

69

Virtual Memory

• Original motivation: to increase the memory
capacity of the computer beyond the size of
the main memory

• The problem:
– If a program became too large to fit into memory…

• The original solution (before VM):
– The programmer was responsible for dividing the

program up into mutually exclusive parts that would fit
into main memory

– The programmer was also responsible for making sure
the correct part (overlay) was loaded in to the main
memory at the proper time

70

Virtual Memory

• With “virtual memory”, the disk is used as
the lowest level in the memory hierarchy

• The address space is the range of memory
addresses

– usually much larger than the capacity of the main
memory

– E.g. 32-bit addresses => 232 ~ 4 x 109 addresses
(usually 4 Gigabytes capacity)

71

More Motivation for VM

• But there are other motivations for VM, which are
just as important…

• Multitasking
– Many processes (programs) are sharing the memory space
– Each one thinks it has a contiguous chunk of memory – hide

details from each process (# of processes,size of processes..)
– Memory protection => don’t let a process access another’s

memory

• Relocation
– Allows a program to run anywhere in memory
– maps the addresses generated by the compiler to the real

address of the memory in the main memory or disk

72

73

contiguous

“paged out” pages
(swapfile)

Pages and Segments

• Chunks of memory are called pages or segments (instead
of blocks in caches)

– Pages are a fixed size (con: internal fragmentation)
– Some machines use variable size pages called segments (hard to

replace since you need to find contiguous, variable sized, free space)

• A reference to a page that is on the disk => page fault

74

4 Questions

• Block placement
– Miss penalty is huge ! (1,000,000 to 10,000,000

cycles)
– Go for lower miss rate at expense of more complex

algorithm (O/S)
– VM uses a fully associative strategy (pages can be

placed anywhere in main memory)

• Block Replacement
– Minimize page faults !
– LRU replacement (set “use bit” when a page is

accessed. O/S keeps track of them)

75

4 Questions

• Write strategy
– Write back (avoid writing to disk whenever possible)

• Block ID
– Need to translate (map) the virtual address on-the-fly

to a physical address
– Store the mapping in a page table (maintained by O/S)

76

77

Page Tables

• Index with the virtual page #
• The page table stores the corresponding

physical address
• Each process gets a page table
• Page tables are stored in main memory (and

can therefore be in the cache)
• Page tables can be large

78

Page offsetVirtual page number

Virtual address

Page offsetPhysical page number

Physical address

Physical page numberValid

If 0 then page is not�
present in memory

Page table register

Page table

20 12

18

31 30 29 28 27 15 14 13 12 11 10 9 8 3 2 1 0

29 28 27 15 14 13 12 11 10 9 8 3 2 1 0

79

Page Table Example

• 32-bit virtual address
• 4 KB pages
• 4 bytes per page table entry

• The page table would be 232/212 x 22 = 222

bytes (4 MB)

80

Combining Segmentation with Paging

• Processes are often divided into several
spaces for code, data, stack

• Segments can be used to dynamically adjust
each process’ memory usage

• Pure segmentation is not often used, but
segments can be divided into multiples of
pages

81

82

Courtesy: UW CS350

Courtesy: UW CS350 83

Fast Address Translation

• Paging means that every request results in two
memory accesses

– One to read the page table to get the physical address
– One to get the data

• This is very costly. Especially wasteful since locality
tells us that consecutive accesses are likely to be on
the same page

• Why redo the address translation every time?
• Solution => cache the most recent translations !

– notice how in a small number of architectural techniques keep
coming up in this course…e.g. caching, using the past to
predict the future, pipelining, parallelism…

84

Translation Lookaside Buffers (TLB)

• The name of the special cache used to
remember the most recent address
translation is the translation lookaside
buffer

• Just like a cache – tag is portion of virtual
address and data is the physical page
number (along with a field used for
protection, valid bit, use bit, and dirty bit
for the memory page)

85

TLB Placement

• The TLB is usually inserted between the
CPU which supplies virtual addresses and the
memory system which requires physical
addresses

TLB

Cache

Main memory

virtual address

physical address

86

TLB Placement

• This raises the question of whether caches
should operate on physical or on virtual
addresses

– Caches can be virtually or physically tagged and
indexed.

87

process #

Alpha 21264 TLB

• The Alpha TLB is FA (in general, can use any strategy)

88

Valid Tag Data

Page offset

Page offset

Virtual page number

Virtual address

Physical page numberValid

1220

20

16 14

Cache index

32

Cache

DataCache hit

2

Byte�
offset

Dirty Tag

TLB hit

Physical page number

Physical address tag

TLB

�

�

Physical address

31 30 29 15 14 13 12 11 10 9 8 3 2 1 0

virtual address

DM

FA

A Simple Example

89

<28>

• Page size 8 KB
• TLB: DM with 512 entries
• L1: DM 8 KB
• L2: DM, 4 MB
• Caches use 64-byte blocks

90

Alpha 21264
Memory Hiearchy

(page 483)

91

92

93

94

95

	Chapter 5
	Introduction and Motivation
	Principle of Locality
	Memory Hierarchy
	Memory Hierarchy
	Memory Hierarchy in 2003
	ABCs of Caches
	ABCs…
	CPU Performance with Caches
	Miss Rate
	Reads / Writes
	Four Memory Hierarchy Questions
	Q1: Block Placement
	Block Placement
	Associative Caches
	Real Caches
	Q2: Block Identification
	Address Fields
	Search
	Address Fields
	Searching…
	Direct Mapped Cache
	Q3: Block Replaement
	3 Replacement Strategies
	Q4: Write Strategy
	Reads / Writes
	2 Write Strategies
	Write Back
	Write Through
	Write Misses
	Example: Alpha 21264 Data Cache
	Unified vs. Split Caches
	Chapter 5
	Cache Performance
	AMAT and CPU Performance
	CPU Performance with Imperfect Caches
	Example
	Example
	Cache Impact on Performance
	AMAT is not CPUtime !
	Example (in ns, not cc)
	Out-of-Order Execution
	Performance Summary
	Cache Optimizations
	Reducing Miss Penalty – Multilevel Caches
	Multilevel Caches
	Multilevel Exclusion
	Critical Word First and Early Restart
	Priority of Read Misses Over Writes
	Merging Write Buffer
	Merging Write Buffer
	Victim Caches
	Miss Rate Reduction
	Tradeoffs
	Other Techniques to Reduce Miss Rate
	Compiler Optimizations
	Chapter 5
	Virtual Memory
	Virtual Memory
	More Motivation for VM
	Pages and Segments
	4 Questions
	4 Questions
	Page Tables
	Page Table Example
	Combining Segmentation with Paging
	Fast Address Translation
	Translation Lookaside Buffers (TLB)
	TLB Placement
	TLB Placement
	Alpha 21264 TLB

