Chapter 5

Memory Hierarchy
Part 1

Slides: W. 6Gross, V. Hayward, T. Arbel

"Ideally one would desire an idefinitely large memory capacity such that
any particular..word would be immediately available..We are...forced to
recognize the possibility of constructing a hierarchy of memories, each
of which has greater capacity than the preceding but which is less
quickly accessible."

A. W. Burks, H. H. Goldstine, and J. von Neumann, 1946

Introduction and Motivation

* Goal: unlimited amounts of fast memory.

100,000 posramsrmme e e s e s e e e e e B R S P T S TR T B oS G
10,000
1000
Performance

100

10

© 2003 Elsevier Science (USA). All rights reserved.

Principle of Locality

* Why does it work?

- Principle of locality - nonuniform access
- Smaller memories are faster

* Problem: fast memory is expensive |

+ Solution: hierarchy of memory organized
into different levels, each progressively
larger, but slower

Memory Hierarchy

* Requirements: (apparently contradictory)
- Provide virtually unlimited storage
- Allow the CPU to work at register speed

- Analogy with personal belongings:
- wear what you need for a day
- suitcase for a week
- house or apartment as permanent storage

Memory Hierarchy

I/O bus

C Memory
CPU a bus
: C Memory
Registers h
e
Register Cache Memory
reference reference reference
Size: 500 bytes 64 KB 512 MB
Speed: 0.25ns 1ns 100 ns

© 2003 Elsevier Science (USA). All rights reserved.

I/O devices

Disk
memory
reference

100 GB
5ms

Memory Hierarchy in 2003

Level 1 2 3 4

registers cache main disk storage

memory

Typical size < 1 KB < 16 MB < 16 6B | > 100 GB
Technology Multi-port | On- CMOS | Magnetic disk

custom chip/off- | DRAM

CMOS chipd

memory CMOS

SRAM

Access time (ns) |0.25-0.5 (0.5 -25 |80-250 | 5,000,000
Bandwidth 20,000- 5000 - 1000 - 20 - 150
(Mb/s) 100,000 10,000 5000
Managed by compiler hardware | OS OS/people
Next level cache main disk CD/tape/network

memory

V4

ABCs of Caches

+ Cache is a buffer between CPU registers
and main memory

- Divided into blocks to take advantage of temporal and
spatial locality in programs

- Similarly, virtual memory divides a large address space
in pages stored in main memory
* Principle: keep in higher level storage a copy
of a subset of the next lower level.
- E.g. registers hold a copy of subset of blocks

- Blocks are a copy of a subset of the main memory,
etc...

ABCs...

Every time an item is requested

- Hit: if found in next lower level

- Miss: if not found
E.qg.

- load or fetch found in cache => cache hit
E.qg.

- If cache loads a block and it is not found in main memory =>
page fault

- Page is retrieved from the disk
If a hit ..deliver data item

If a miss..fetch the correct block from the lower
level of the hierarchy

- CPU must stall

CPU Performance with Caches

MemorvStallCyeles = NumberOfMisses = MissPenalty

Visses
= IC = . « MissPenalty
Instructions

MemorvAccesses

= [C =

. « MissRate = MissPenalty
Instruction

10

Miss Rate

*+ The measurement problem becomes finding
the miss rate
- the average number of misses per access

- Address trace

- A large sequential collection of addresses accessed by
a benchmarks and fed to a cache simulator

11

Reads / Writes

[t we refine the previous formula to distinguish reads and writes. we have:

Memory Accesses

MemoryStallCyveles = 1C = < MissRate « MissPenalty

Instruction
= 1C = ReadsPerlnstruction = ReadMissRate ~ ReadMissPenalty

1C < WritesPerlnstruction = WritesMissRate - WritesMissPenalty

12

Example.

Assume that a machine has a CPI of 1.0 when all memory accesses are hits in the
cache. The only data accesses are loads and stores. and these total 50% of the
instructions. If the miss penalty is 25 clock cvcles, and the miss rate is 2%. how
much faster would the machine be it all accesses were cache hits?
CPUTime = (CPUClockCyeles + MemorvStallCyeles) =« CCTime
In the perfect case:
CPUTIme pyppeeq = (1€ CPTH0.0) 2 CCTime = 1€ CCTime

With the real cache:
MissRate = MemorvAccesses
MemorvstallCveles = 1C =« — « MissPenalty
Instruction
= 1C 2002 = (1.0 + 0L5) =25 = 1C = (L75

(1C+0.75 < 1C) = CCTime = 1C = 1.75 = CCTime

S —
CPUTime real

The machine with no cache misses 1s 1.75 faster.

13

Four Memory Hierarchy Questions

Caches: Main memory is divided into blocks each
consisting of several data elements (e.g. bytes)

. Where can a block be placed in the upper level?
- Block placement

. How is a block found if it is in the upper level?
- Block identification

. Which block should be replaced on a miss?
- Block replacement

. What happens on a write?
- Write strategy

14

Q1: Block Placement

Fully associative
- A block can appear anywhere in the cache

Direct mapped cache
- Each block can only appear in one place in the cache
» block address mod # blocks in cache

Set associative

- A block can be placed in a restriced set of places in the
cache

- First, map a block onto a set
- The block can be placed anywhere in that set
- Set chosen by bit selection
» Block address mod # sets in cache
- n blocks in a set => n-way set associative

15

Block Placement

Fully associative: Direct mapped: Set associative:

block 12 can go block 12 can go block 12 can go

anywhere only into block 4 anywhere in set 0
(12 mod 8) (12 med 4)

Block 01234567 Block 01234567 Block 01234567
no. no. no.

Cache
Set Set Set Set
0o 1 2 3
Block frame address
Block 1144144111488 2025809465488
no. 01234567890123456789012345678901
Memory

© 2003 Elsevier Science (USA). All rights reserved.

16

Associative Caches

In general, m blocks in cache, n blocks in a set, s
sets in cache

m=s*n
n-way set associative => n > 1 ands > 1
fully associative => n = mand s = 1 (m-way s.a.)

direct mapped => n =1 and s = m (1-way s.a.)

Mapping: set number is called "index"
index = block # mod s

17

Real Caches

* Most processor caches today are
- Direct mapped, or
- 2-way set associative, or
- 4-way set associative

18

Q2: Block Identification

How is a block found if it is in the cache ?

Why is this an issue?
- Many blocks in main memory map to one or few blocks in cache

A complete address in the address space of a addresses can
be divided into fields

- Each field has a significance in the hierarchy

Each block contains d data items gby'res, words...). So a field
in the address called the "block offset” (lower-order bits)
indicates which of the d data items in a particular block we
want to access

We then also need a field "block address” to indicate which
block number in memory we will access (higher-order bits).

19

Address Fields

address space
<log, @>

—

Block address

Tag

Index

Block
offset

—
<log, d>

© 2003 Elsevier Science (USA). All rights reserved.

20

Search

- Now that we know which block to look for,
we need to identify which one of the s sets
the block could be in (s is called the
“index")
* Now, the block could be anywhere in this
set, so we need to do a search within this
set to identify the particular block

- Search for the "tag”

21

Address Fields

address space

<log, @>
—

Block address Block
Tag Index offset

ﬁﬁ
<log, s> <log, d>

© 2003 Elsevier Science (USA). All rights reserved.

Searching...

Direct mapped
- No search
- Index directly provides block number in cache

n-way set associative
- smaller index and a larger tag as n gets larger

fully associative
- no index

Tag check search is done in parallel for
speed - if the tag is found => a hit |

How do we know if the cache block has been
loaded with valid data ?

- Add a "valid bit” to every block in the cache

23

Direct Mapped Cache

Address (showing bit pesitions)
3130 ---13 1211 --23 1

By
I ol Tl
Hit T 'I\EG n S Data
F ﬂﬂ
ITndex
Index Valid Tag Data
ik
1
2
T -
1021
1022
1023
- __‘:EU 132

Q3: Block Replaement

* Which block should be replaced on a miss?

Direct mapped

- no choice |

Fully associative or set associative
- Many blocks to choose to replace

25

3 Replacement Strategies

1. Random
- Simple
2. Least-recently used (LRU)

- If recently used blocks are likely to be used again
(locality) then a good candidate for disposal is the
LRV block

- Record accesses to blocks

3. First in, first out (FIFO)

- Replace oldest block
- Approximation to LRU

26

Q4: Write Strategy

* Most cache accesses are reads
- Instruction accesses are reads
- MIPS: 10% stores, 37% loads
- Writes 7% of overall memory traffic
- Data cache only: writes are 21%

27

Reads / Writes

* Make common case fast
- Optimize caches for reads
- Reads are the easiest to make fast
- Read block at same time as tag check
- Only drawback to reading a block immediately is power
- Ahmdahl's law: don't neglect speed of writes

* Why writes so slow?
- Writes cannot begin until after tag check

- Writes can also be of variable width (as can reads, but
there is no harm in reading more, except power)

28

2 Write Strategies

1. Write through

- Wprite information to the block in the cache and to
the block in lower-level memory

2. Write back

- Write information only to block in the cache. Write
the modified cache block to the main memory only
when it is replaced

29

Write Back

+ "Dirty bit" kept for each block

- Indicates whether the block is "dirty” (modified while
in the cache) or "clean” (not modified)

- Reduces frequency of write back

- Advantages:
- writes occur at speed of cache

- Multiple writes to a block require only one write to
main memory

- Some writes never make it fo main memory
» Memory bandwidth reduced
» Lower power

30

Write Through

- Advantages:
- Simple, easier to implement

* Cache is always clean
- Read misses never result in writes to lower level

- Write stalls

- CPU must wait for writes to complete
- Use a write buffer

31

Write Misses

Two strategies (used with both WB and WT)

Write allocate
- Make write misses act like read misses

- Allocate the block in the cache then follow same steps as a
write hit

No-write allocate
- A little weird- write misses do not write the cache
- Block is modified only in lower-level memory

- Blocks stay out of the cache until the program tries to read
the blocks

Normally:
- Werite back caches use write allocate (benefit from locality)

- Write through caches use "no write allocate” (avoid redundant
writes)

32

Block address Eflfc::: g;l:ess EXGmple .
e e = Data Data
Tag Index ﬁ = in out Alpha 21264
Data Cache
sz | |® - 64 Kbytes

blocks)

-+ 64-byte blocks

- 2-way set
associative

- Write back
- Write-allocate

(512 @

blocks)

on a write miss
buffer

Lower-level memory i

2index = cache size / (block size * associativity) = # blocks / associativity

33
© 2003 Elsevier Science (USA). All rights reserved.

Unified vs. Split Caches

- Instruction and data streams are different

- Instructions are fixed size, read-only, very local (except for
branches)

. 'C||'wo caches: one optimized for instructions and one for
ata

- Drawback: Fixed capacity is split between the two caches

- Split cache:

MemoryStallCycles = NumberOfMisses x MissPenalty

Misses i
= 1C x — x MissPenalty
Instruction

= IC xLP etehMISSeS . FetchMissPenalty
Instruction

: \
DataMisses : '
+ X Data_\’llssPenalt}fJ

Instruction

34

Chapter 5

Memory Hierarchy
Part 2

Slides: W. 6Gross, V. Hayward, T. Arbel

35

Cache Performance

* Miss rate is independent of the speed of
the hardware

+ Better measure of mem. Hierarchy
performance is Average Memory Access
Time

AMAT = HitTime + MissRate x MissPenalty

36

AMAT and CPU Performance

CPUTime = IC x CPI x CCtime

- Assumes perfect memory hierarchy
performance (all accesses were hits)

» Pipeline: assumes all memory accesses
complete within one clock cycle
- Hit time < CCtime

* How to account for real memory hierarchy?

37

CPU Performance with Imperfect
Caches

i . 1
e N Memorvstalls |
CPUTime = 1C = CPly . + s |« CCTime
) Instruction

A

. « MhissRate = MissPenalty [« CClTime
Instruction),

l MemorvAccesses
— £] " } = ul v
I{ -:":!{[Ihﬂ.ﬁ-l‘;‘-'__

38

Example

* UltraSparc III (in-order execution)

* Cache miss penalty = 100 cc

* Instructions: 1.0 cc (ignoring mem. stalls)
* Miss rate = 2%

+ 1.5 mem ref/instructions on average

+ Cache misses > 30 misses /1000 instr.

* Q: what is the impact on performance when
the cache is considered?

39

CPUTime = 1C | CPly +

— 1 _.I I
1C x| CPlyye +

Example

MemoryStalls | .
- = CC Time
Instruction

MemorvAccesses : : [P
: = MissRate = MissPenalty |;~{ Clime

Instruction

= IC x (1.0+(30/1000) x 100) x CC

IC x 4.00 x CC

* or use miss rate

CPUTime_ ..

IC x (1.0+(1.5 x 2% x 100)) x CC
IC x 4.00 x CC

40

Cache Impact on Performance

* With low CPI (< 1) the relative impact of a
cache miss is higher

+ With faster clocks, a fixed memory delay
yields more stall clock cycles

41

AMAT is not CPUtime !

Example: 2 cache designs fitted to the
same CPU CPTI = 2 with perfect cache

* Cycle time = 1.0 ns
1.5 mem refs / instruction

Both caches are 64 KB and have block
sizes of 64 bytes, miss penalty = 75 ns

. Direct mapped: 1ns hit time, mp = 75
cc,mr = 1.4%

. 2-way set assoc.: 1.25 ns hit time (slows
down system clock), mp = 60 cc, mr = 1%

42

Example (in ns, not cc)

AMAT, .. = 1.00+0.014 x 75 = 2.05 ns
AMAT, gy = 1.25+ 0.010 < 75 = 2.00 ns
CPUTime,_,, /1C=CPl,_,,, « CCTime,_,,, =2 %1.00+(1.5x0.014 x 75)= 3.58

CPUTime,.,, /1€ = CPl,., » CCTime,

== ﬂ}' == H.:'a'

2x 1254+ (1.3=x0.010=73)= 3.63

- AMAT is lower for 2-way
+ CPU time is lower for 1-way !
- Why?

-+ 2-way stretches clock cycle for ALL
instructions even though there are fewer
misses!

- build the 1-way in this case

43

Out-of-Order Execution

* Miss penalty does not mean the same thing
- The machine does not totally stall on a cache miss
- Other instructions allowed to proceed

* What is MP for O-O-E?
- Full latency of the memory miss?
- The nonoverlapped latency when the CPU must stall ?

- Define:

MemorvstallCveles Misses - i i
: — = . (TotalMissLatency - OverlappedMissLatency)
[nstruction Instruction

44

Performance Summary

+ Textbook Page 412 Figure 5.9 summarizes
all the performance equations (12 of theml)

+ AMAT = HitTime + MissRate x MissPenalty

+ Cache optimizations will be studied next
focussing on reducing hit time, miss rate
and miss penalty (analogy to CPU
performance equation)

45

Cache Optimizations

* Penalty reduction: multilevel caches, critical
word first, read priority over writes,
merging writes and victim caches

- Miss rate reduction: Block size, cache size,
associativity, pseudoassociativity, compiler

optimizations

* Parallelism: non-blocking caches, hardware

prefeteching, compiler prefetching

- Hit time reduction: cache size and
organization, address translation avoidance,
pipelined caches, trace caches (brief
coverage)

46

Reducing Miss Penalty - Multilevel
Caches

- Reduce penalty by adding a cache to the cache !

- Penalty at a given level is determined by the AMAT
of the next lower level

- E.g. penalty to replace a register is the load delay

AMAT, = HitTime; +MissRate; < MissPenalty;
MissPenalty; = AMATL

50
AMAT; = HitTimey ; + MissRatey ; = (HitTimep , + MissRateyp; < MissPenaltyy,)

:!Iil'l'imeu | _'#]ifr.!{uli:u Iiit'l'imuE_.. - }]iﬁxlielleLl_- _\'i!-i!il{illt_l_% MissPenalty ;

; g
Mew hilt time Mew imiss rale

47

Multilevel Caches

- For small miss rates:

- Small increase in hit time

* Huge reduction in miss penalty because
misses that go all the way to memory (global
misses) are rare (mrl x mr2)

- L1 should be fast for a small hit time

* L1 usually on-chip to reduce interconnect
delays

» L2 should be bigger (Tyﬂically off-chip) and
should have a more sophisticated
organization to reduce miss rate

48

Multilevel Exclusion

+ What if a design cannot afford a L2 cache
that is much larger than L1

- Wastes most of L2 with redundant copies of what is in
L1?

« In this case use multilevel exclusion
- L1 data is never found in L2 cache
- L1 miss results in a swap instead of replacement

* AMD Athlon (2x64Kb L1 and 256 Kb L2)

49

Critical Word First and Early
Restart

- Observation: CPU normally needs just one
word of the block at a time

- Impatience! Don't wait for whole block to be loaded
%guor'e sending the requested word and restarting the

* Critical word first - request the missed

word from memory and send it CPU as soon

as it arrives - CPU continues while rest of
block fills in

- Early restart - fetch the words in normal
order, but as soon as the requested word
arrives, send it to the CPU and let it
continue execution

50

Priority of Read Misses Over Writes

- Write buffers for write-through caches case RAW
hazards

- E.g. direct-mapped, assume 512 and 1024 mapped
to same block

SW R3, 512(RO) ; R3 1n write buffer
LW R1, 1024(RO) ; miss, replace block
LW R2, 512(RO) ; miss

- If write buffer has not completed store then wrong
value written to cache block and R2

-+ Soln: on read miss, check write buffer for conflicts
andT,lf memory system is available, let read miss
continue

51

Merging Write Buffer

+ When writing to the write buffer, check if
address matches an existing write buffer
entry

- Combine data with that write - write merging

- Multiword writes are faster than one word at a time

52

Write address

100

108

116

124

Write address

100

Merging Write Buffer

A

1 [Mem[100] | 0 0 0
1 (Mem[108] | 0 0 0
1 [Mem[116] | 0 0 0
1 (Mem[124] | o 0 0

Mem[100] | 1 |Mem[108]| 1 |Mem[116] | 1 | Mem[124]

© 2003 Elsevier Science (USA). All rights reserved.

53

Victim Caches

Remember what was
discarded in case it is
needed again

Small fully associative
cache between a cache
and its refill path

AMD Athlon - 8 entry
victim cache

CPU
address

Tag

Data

S)

Data Data

in out

Victim cache

© 2003 Elsevier Science (USA). All rights reserved.

/

Write
buffer

Lower-level memory i

54

Miss Rate Reduction

3 kinds of misses

1. Compulsory - first access to a block cannot
be in cache

2. Capacity - cache cannot contain all blocks
needed during execution of a program

3. Conflict - for set-associative or direct
mapped - if too many blocks map to a set

- Hits in FA cache become misses in an n-way SA cache
if there are more than n requests to a popular set

55

.09
.08
07 1 1-way
B 2-way
.06 1 d4-way
HE 8-way
Miss rate 05 [0 Capacity
per type B CompdNsory
.04

.03

N

inite cache FA

.02

.01

©c 000 0 0 O0O0 0 O0C
-

.00
4 8 16 32 64 128 256 512 1024

Cache size (KB)

80226

. 60%c
Miss rate

per type
1-way
40% 2-way
d-way
8-way
20% Capaetty
Compulsory
High associafiv &4 128 1024

256 512
Cache size (KB) Compulsor'y small
Capacity misses require large caches

© 2003 Elsevier Science (USA). All rights reserved.

Tradeoffs

Larger blocks exploit spatial locality (but might increase MP)

10%

Miss

rate 07

0%

O

..

A— =5 O 64K
I —+ + ? 256K
16 32 64 128 256

Block size

Other Techniques to Reduce Miss
Rate

Larger caches
- Cost tradeoff
- Higher hit times

Higher associativity

- Rule of thumb: Direct mapped cache of size N has about the
same miss rate as a 2-way set associative cache of size N/2

- Higher hit times (search)

- Way prediction: use extra bits to predict the next block in
the set that will be accessed (similar to branch prediction)
Pseudoassociativity - cheap form of associativity for

direct mapped caches.

- On a miss a second entry is checked, say by inverting index
bits (‘pseudo-set")

- One fast hit and one slower one

58

Compiler Optimizations

* Matrix and vector code can be written to have an
impact on cache performance - improve spatial locality

- Instead of going through arrays in whatever order the

programmer chose, operate on all the data in a cache
block

* Loop interchange: x[i][0] is contiguous with x[i][1]

for (= 0; 7 < 100; ++7) for (1 =0: 1 ¢ 5000, ++1)
for (1 = 0; 1 < 5000, ++1) for (j = 0; 7 < 100; ++7)
x[1] (3] = 2 * x[i] [3]; x[1] [J] = 2 * x[i] []];

59

Loop fusion:
for (1 = 0; 1 < N; ++1)
for (J = 0; J < W; ++43)
al1] [3] = blz][3] * cl1][3];

for (1 = 0; 1 « N; ++1)
for (3 = 0; J < N; ++7)
dl1][7] = alz] [3] + cl1][3];

Becomes:
for (1 = 0; 1 <« N; ++1)
for (§J = 0; 7 < N; ++3) |
al1] [3] = b[1][3] * c[1][]];
| d(1] [J] = ali]l (3] + el2][3];
The second version of the code increases temporal locality since each element of a
and c 1s reused in the next statement,

60

Blocking:
One attempts to stride though arrays by amounts that do not exceed the cache size.
for (1 = 0; 1 « N; ++1)
for (3 =0, r=0.0; 7 < N; ++3) {
for (k = 0; k « N, ++k)
T o+= yli] [k] * z[k] [J];
x[1] [7] = z;

for (JJ = 0; 317 < N; 71 += B)
for (kk = 0; kk = N; kk += B)
for (1 = 0; 1 « N; ++1)
for (J = 37, r =0.0; 7 « min(j] + B, N); ++7) {
for (k = kk; k « min(kk + B, N, ++k)
r 4= y[i) K] * 2K [3];
x[1] [J] = r;

This way, tight-loop processing occurs within sub matrices of size B * B which are
designed to fit in the cache.

61

Chapter 5

Memory Hierarchy
Part 3

Slides: W. 6Gross, V. Hayward, T. Arbel

62

Parallelism.

For out-of-order execution processors, there is no need to stall the processor on a
miss since instructions not pending on a load can proceed. A cache organization
which allows hits during the resolution of a miss is called “hit under miss™ non-
blocking cache. The level of sophistication varies with the number of allowed
pending misses before blocking the cache.

100%

BG% Lceamrmrmes 2a0c o000 f ..

_;h

Percentage I
ol 1h average 0% fp\j S R —

memory
stall time 50% y

40% § e

1‘:"?-"’& P Doy S

0 L R . R
d{?qﬁéﬁja E@Q Sl ,ﬁﬁ

R & & &
o

Q?L ‘:I(SFP Eiodp cf';'s@ :ﬁd\'\\

Henchmarks

As measurements show, this is extremely important for FP matrix code, but useless
for integer code.

63

With prefetching, the idea is to fetch one or several blocks ahead, instead of one on a
miss. It is not the same thing as designing a larger block size because the two fetches
are done in parallel.

The common organization 1s to add yet another buffer or buffers on the instruction or
the data stream. These prefetch buffers have the size of a block. Upon the next miss,
the prefetch buffer(s) is/are checked before going to the lower memory. Just four
buffers can reduce the miss rate by almost half.

[f the hardware does not support prefetching, the compiler can use this technique by
inserting load instructions. There are even special prefetch load instructions which
do not create exceptions such as page faults called nonbinding prefetch.

= 0; 1 <« 3; ++1) for (7 = 0; 7 < 100; ++7) {
for (j = 0; J < 100; ++1) prefetch(b[j+7] [0]);

ali]l [§] = bI[jI[0]*b[]j+1] [O]; prefetch(a[0] [§+7]);
al0] [J] = bl[jl[0o]l*b[j+1] [0];

What the prefetch instructions do is load the cache with the blocks containing data
needed 7 iterations later achieving a tremendous amount of overlap.

64

Hit Time Reduction.

Hit time 1s also important because it is on the critical path of (hopefully) the majority
of memory accesses.

The first necessity is plainly at the circuit design level. So the first level cache is

nowadays on-chip, and electronically optimized. The same can be said of the tags for
the second level cache.

For the purpose of this course, we skip the details of hit time reduction (pp. 443-
448).

65

Main Memory Organization

The main memory can also benefit from architectural improvements. The basic idea
is to increase the traffic between the main memory and the cache(s). The tradeoft is

described by this simple diagram.
(1) (2)
CACHE i !H

MULIX

O
m

(3)

CPU

CACHE

MEM
Bank O

MEM
Bank 1

MEM
Bank 2

MEM
Bank 3

T 1T T T T T

<3UC)§rﬂﬂ§HIE'“

MEMORY

1. Base design: all data paths one word wide.

2. Expensive improvement, not necessarily efficient with much extra hardware.

3. Interleaved design has several advantages: same bus width, expandability.

66

Interleaved Memory Organization

The memory is organized in banks such that Bank 0 contains all the words whose
addresses are 0 modulo the number of banks, etc.

The advantage is to make it possible to overlap or interleave memory accesses
because the banks are read or written sequentially. Here 1s the address layout for four
banks. A block is read by hitting the banks sequentially.

Bank 0 Bank 1 Bank 2 Bank 3
0 1 2 -
4 5 6 7
8 9 10 11
12 13 14 15

For example, there would be the pattern of activity for consecutive replacements of
blocks at addresses 0, 8, 4, and 12. a0 means address sent, wx means word at address
x supplied after a given latency:

al wi wl w2 w3
asd w8 w9 wi0 wli
a4 wd wh ows w7
al2 wi2 w13 wid wib

Here, the number of banks is equal to the number of cycles needed to access a word.
In this condition, the bus is kept 100% occupied. In general, it 1s desired that

number of banks Znumber of access cycles
(access cycles in CPU clock cycles) to keep the bus fully occupied.

67

Some numbers

Assume that 4 CC are needed to send an address. 356 CC are needed for word access.
and 4 CC spent in sending one word to the cache.

= A 4-word block replacement for the 1-word wide bus organization costs:
4x(4+56+4)=256 CC.
* Increasing the bus width by », ideally divides this number by .
= With the interleaved design, at no hardware cost. the block replacement costs:
4+56+(4x4)=76 CC,
the equivalent of tripling the bus width at almost no hardware cost.

Consider a machine of ideal CPI of 2 and a benchmark with 1.2 memory accesses

per instruction, and a cache such that Block size (word): 1 2 4
Miss rate (%): 3 2 1.2
All the design cases are here:
1 word block 2 word blocks 4 word blocks
1 word bus | 2+(1.2x0.03 x 64) = 4.30 2+(1.2x0.02x128) =5.07| 2+(1.2x0.012 x4 x 64) = 5.69
interleave same 2+(1.2x 0.02 x (4+56+8)) = 3.63 | 2+(1.2 x 0.012 x (4+56+16))= 3.09
2 word bus N/A 2+(1.2x0.02x64) =354 2+(1.2x0.012x 2 x 64) = 3.84

Interleaved memory organization i1s essentially a method to take advantages of
caches to pipeline memory accesses: a re-occurring theme in CA. Needless to say,
this design 1s wide-spread.

68

Memory Technology
Memory technology:
DRAM, SRAM, ROM, Flash, SDRAM, RAMBUS, RDRAM.

We skip this subsection.

69

Virtual Memory

- Original motivation: to increase the memory
capacity of the computer beyond the size of
the main memory

» The problem:

- If a program became too large to fit info memory...

» The original solution (before VM):

- The programmer was responsible for dividing the
program up intfo mutually exclusive parts that would fit
info main memory

- The programmer was also responsible for making sure
the correct part (overlay) was loaded in to the main
memory at the proper time

70

Virtual Memory

* With "virtual memory”, the disk is used as
the lowest level in the memory hierarchy

* The address space is the range of memory
addresses

- usually much larger than the capacity of the main
memory

- E.g. 32-bit addresses => 232 ~ 4 x 109 addresses
(usually 4 Gigabytes capacity)

71

More Motivation for VM

But there are other motivations for VM, which are
Just as important...

Multitasking

- Many processes (programs) are sharing the memory space

- Each one thinks it has a contiguous chunk of memory - hide
details from each process (# of processes,size of processes..)

- Memory protection => don't let a process access another's
memory
Relocation
- Allows a program to run anywhere in memory

- maps the addresses generated by the compiler to the real
address of the memory in the main memory or disk

72

Virtual Physical
address address

0 A 0
4K B 4K
8K C 8K
12K D 12K
— 16K
Virtual memory 20K
— 24K
28K

PR

contiguous [

© 2003 Elsevier Science (USA). All rights reserved.

Physical
main memory

Disk

“paged out” pages

(swapfile)

73

Pages and Segments

* Chunks of memory are called pages or segments (instead
of blocks in caches)

- Pages are a fixed size (con: internal fragmentation)

- Some machines use variable size pages called segments (hard to
replace since you need to find contiguous, variable sized, free space)

- A reference to a page that is on the disk => page fault

Code Data

Paging

Segmentation

© 2003 Elsevier Science (USA). All rights reserved.

4 Questions

* Block placement

- Miss penalty is huge ! (1,000,000 to 10,000,000
cycles)

- 6o for lower miss rate at expense of more complex
algorithm (O/S)

- VM uses a fully associative strategy (pages can be
placed anywhere in main memory)

* Block Replacement
- Minimize page faults !

- LRU replacement (set “use bit” when a page is
accessed. O/S keeps track of them)

75

4 Questions

- Write strategy

- Write back (avoid writing to disk whenever possible)

- Block ID

- Need to translate (map) the virtual address on-the-fly
to a physical address

- Store the mapping in a page table (maintained by O/S)

76

Virtual address

Virtual page number Page offset

Main
memory

Page
table

YYy

|

Physical address

© 2003 Elsevier Science (USA). All rights reserved.

77

Page Tables

* Index with the virtual page #

+ The page table stores the corresponding
physical address

* Each process gets a page table

* Page tables are stored in main memory (and
can therefore be in the cache)

* Page tables can be large

78

Page table register

31 30 29 28 27 .-

Virtual address

.............. 15 14 13 12 11 10 9 8 c e ee e

Virtual page number

Page offset

Valid

Physical page number

Page table

v

If O then page is notlJ
present in memory

29 28 27 +cceen

A 4

1514 13121110 9 8- -} -

3210

Physical page number

Page offset

Phvsical address

79

Page Table Example

- 32-bit virtual address

- 4 KB pages
* 4 bytes per page table entry

+ The page table would be 232/212 x 22 = 222
bytes (4 MB)

80

Combining Segmentation with Paging

* Processes are often divided into several
spaces for code, data, stack

- Segments can be used to dynamically adjust
each process’ memory usage

* Pure segmentation is not often used, but
segments can be divided into multiples of

pages

81

segment 0

segment 1

segment 2

segment 0

Proc 1

physical memory
0

Courtesy: UW CS350

82

virtual address

seg # page #

offset

~—) bits —=

physical address

frame #

offset

A

segment table

page table

—E—) bits —— =

segment table base
register

page table
length

protection

e e oo e o o e e e

Courtesy: UW €S350

83

Fast Address Translation

Paging means that every request results in two
memory accesses

- One to read the page table to get the physical address
- One to get the data

This is very costly. Especially wasteful since locality
tells us that consecutive accesses are likely to be on
the same page

Why redo the address translation every time?

Solution => cache the most recent translations !

- notice how in a small number of architectural techniques keep
coming up in this course..e.g. caching, using the past to
predict the future, pipelining, parallelism...

84

Translation Lookaside Buffers (TLB)

- The name of the special cache used to
remember the most recent address
translation is the translation lookaside

buffer

* Just like a cache - tag is portion of virtual
address and data is the physical page
number (along with a field used for
protection, valid bit, use bit, and dirty bit
for the memory page)

85

TLB Placement

+ The TLB is usually inserted between the
CPU which supplies virtual addresses and the

memory system which requires physical

addresses virtual address

physical address

86

TLB Placement

- This raises the question of whether caches
should operate on physical or on virtual
addresses

- Caches can be virtually or physically tagged and
indexed.

87

process #

/ Alpha 21264 TLB

Address Virtual page Page
space number number offset
<8> <35> <13>

I

<8> <4><1> <35> <31>
@ @ ASN Prot V Tag Physical address

YY Yy yvyy

A

(Low-order 13 bits
<13> of address)

44- or

/ o
' -
128:1 mux I <31 0r28s (&) 41-bit
A »~ physical

(High-order 31/28 bits of address) address

©

* The Alpha TLB is FA (in general, can use any strategy)

© 2003 Elsevier Science (USA). All rights reserved.
88

A Slmple Example virtual address
313029 ccereccencons 15141312111098+ -« 3210
Virtual page number Page offset
N § 20 N 12
Valid Dirty Tag Physical page number
TLB Ok
Ok
TLB hit«—f® (e '
FA O
O
B—
. Jd20
Physical page number | Page offset
Physical address
Physical address tag Cache index BytelJ
offset
Jus Jue \l\z
Valid Tag Data
Cache
= @
-~ \\32
\|> Data

Cache hit<—G

89

- Page size 8 KB

A More Complicated Example))
TLB: DM with 512 entries

‘Wirbual address <54

- L1: DM 8 KB

- L2: DM, 4 MB
| btk usinalacd | F#TM == . Caches use 64-byte blocks
[718 tag compare address <43> [TLBindex <8= | | L1 cahe index <7> | Block offset <6> |

To CPLU

L

LT data <512

TLE lag <43 TLE ditia 28>

L1 cacha tag <28>.

L1 tag compare address <28
I

L1 is virtually
indexed but
phvsically taggec
1.2 is physically
indexed and
lagged.

On a L1 miss,
the physical
address 15 used
1o fetch a block
from L2,

Physical addrass =41=

L2 tag compare address <19 | L2 cache index <16> | Block offset <=

To CFU

L2 cache lag <19= L2 data <512=

To L1 cache or CPU
20

© 2003 Elsevier Science (USA). All riahts reserved.

Virtual page Page CPU o , Data virtual page Page
number =35> offset<13> ore queue number -~ offset<13>
ASN [Instruction dataout ~ ASN ,_p_j_gﬁé_'_.)
<& I : <128> <B4> <8> 1 . Data in <64>
| I7
| G @ <d> <1 <35> <31=> @
D _iSrProi A Tag Physical address
1 % f<zs | T i | <64>
<64t L
A (1024 ASNProt V Tag wayLine Data 1 B @Li
[blocks) <8> <4><1><33> <1> <1 l>«:512$ =
H I | I oo s
E
(High-order 28 or 31 bits@
T (3) physical address), 31
)
<Oy <6>
D Index Block @
<4><1> <35> <31> c offset
ASNProtV Ta Physical address ‘é)
! 2q A Valid Tag Data
X - C <> <20> <512>
L - H
B E @ I=
| @ ;
=1]
(High-order 28 or 31 bits J L5,
of physical address) @ 1281 mux @ I@ -
; <31> | ft—
Instruction prefetcher ° & .
<ad=) (@ 2 [@ i—ﬁ @ 2:1 mux
@—— Tag<38> __ Data<512> @)
Address @ <dds @ [Address<38> Data <512> I
Z 5 3
T =7
| o o
@ © Victim | '
buffer [
1
L by @
4:1 mux
Alpha 21264 L— 4 @ @
<dd> A <1284 <15> 47 <B4> 4
(8) V D Tag Data M System chip
®oi> | <> e & 512> @l €3 A memory crossbar
2 I
c N <256= <256>
A
o (131,072 M [onw p © | oww]
H blocks) . . E
E] I . g -
® ! A [_omm | A
& @ v

Alpha 21264

(page 483)

Memory Hiearchy

91

Protection

Mudtitasking (or multiprogramming), i.e. the possibility for a computer to give the
illusion that many processes run simultaneously. is one of important the features
provides by vm. Just like the possibility of allocating virtual space to processes had
to be supported by hardware features to let many processes share the physical
memory. multitasking also requires simple but crucial CPU support.

The basic idea is time sharing, whereby a collection of processes share the time line
bv slicing it into short periods. short enough (a few ms i.e. millions CC) to be
unnoticeable to users. The 08, using a scheduling algorithm. allocates these time
slices to each process in turn. The exact manner is a topic in operating systems. Here,
we are interested in its hardware aspect.

Each time the CPU is about to run a new process. the process which was running is
interrupted by the kernel (an exception which synchronous. coerced. resumable, and
non-maskable), its state is saved and control is given to another process. This is
called a process switch. Since this happens in virtual space, pages form the old
process can be paged out to make room for the new. One key point is to make the
process switch efficient. The TLB does that well: the PTEs of the old process are
invalidated as well as the cache by turning off the v bits and the whole machine starts
from fresh.

92

What's missing in this picture is how to prevent a process from illegally accessing
the space allocated to others. There exists several hardware mechanisms to make this
efficient (recall that every memory access has to be checked for validity). We
describe the simplest and the most elegant scheme used by the tfamily of Unix 08’s,

The first element is those protection bits in each PTE (i.e. for each page). They
operate like the permission bits for Unix files: read. write, execute: data that cannot
change. data that can change. and code (there is usually a hierarchy of permissions).
The other piece of hardware is a pair of registers, hase & bound. The address
generation hardware makes sure that all addresses are such that base < a < bound, or
that (base + a) = bound (if not the, offending process is terminated). To see how this
works in general. notice that any process consists of four parts:
= Text. The code itself, the instructions (read only. fixed length).
*= Data. The portion of memory allocation which has an initial value when a
process starts. In C this is all the static variables (read/write, fixed length}).
= Stack. A portion of memory which grows and shrinks (read/write, variable
length).
* Heap. A portion of memory that a process can claim (malloc) and release for
later use (free) (read/write variable length).

93

The 0s divides the virtual address space into segments called seg0. seg1. and kseg:

segl segl
text + heap stack + data

kseg

The hardware translation mechanism interprets the two most significant bits in a
special way. The first distinguishes addresses in seg0 which grow upward. from
those in seg1 which grow downward (makes it easy to determine when they cross).
The second most significant bit distinguishes addresses produced by ordinary
processes from addresses produces by the kernel addresses.

The whole computer operates in one of two modes. In kernel mode all addresses
have the kernel bit on and are allowed to read and write everywhere. In user mode.
the hardware checks the base and bound registers and the protection bits and the
interrupt masking mechanism is disabled. When the computer is kernel mode, only
the clock and 1/O events can interrupt it and the protection mechanism is disabled.
Using clock interrupts, the kernel’s scheduler periodically gives control by time
slices to each user process in the machine. During each time slice. it runs in user
mode.

94

This way protection is ensured. whatever a user process does cannot affect the
machine. Since the user processes cannot anything but compute. one more
mechanism is required for services like 1/0O, allocating more space, launching other
processes, or passing data from one process to another. All this is done using
svscalls, that is traps to invoke system services.

An example: what happens when one type “C because a program must to be
terminated because it is in an infinite loop?

The kevboard sends an interrupt to the CPU when pressed. CPU switches to kernel
mode to run the keyboard driver and stops whatever it was doing, probably running
that infinite loop during a large number of time slices. The driver get the character
“C which is recognized as special and let the kernel know ot it. The kernel simply
removes this process from the list of processes to be scheduled on the basis that this
“C came from the keyboard that launched it. All this happens by switching back and
forth from user to kernel mode.

Another example: a process exceed its bounds trying to write in the space of
another process. A memory exception is generated which wakes up the kernel. From
the process tables. the offending process is found and removed from the schedule.
The user is given a “core™ file, that is an exact copy of the state of the machine when
the exception occurred so debugging can be done by “post-mortem analysis™.

95

	Chapter 5
	Introduction and Motivation
	Principle of Locality
	Memory Hierarchy
	Memory Hierarchy
	Memory Hierarchy in 2003
	ABCs of Caches
	ABCs…
	CPU Performance with Caches
	Miss Rate
	Reads / Writes
	Four Memory Hierarchy Questions
	Q1: Block Placement
	Block Placement
	Associative Caches
	Real Caches
	Q2: Block Identification
	Address Fields
	Search
	Address Fields
	Searching…
	Direct Mapped Cache
	Q3: Block Replaement
	3 Replacement Strategies
	Q4: Write Strategy
	Reads / Writes
	2 Write Strategies
	Write Back
	Write Through
	Write Misses
	Example: Alpha 21264 Data Cache
	Unified vs. Split Caches
	Chapter 5
	Cache Performance
	AMAT and CPU Performance
	CPU Performance with Imperfect Caches
	Example
	Example
	Cache Impact on Performance
	AMAT is not CPUtime !
	Example (in ns, not cc)
	Out-of-Order Execution
	Performance Summary
	Cache Optimizations
	Reducing Miss Penalty – Multilevel Caches
	Multilevel Caches
	Multilevel Exclusion
	Critical Word First and Early Restart
	Priority of Read Misses Over Writes
	Merging Write Buffer
	Merging Write Buffer
	Victim Caches
	Miss Rate Reduction
	Tradeoffs
	Other Techniques to Reduce Miss Rate
	Compiler Optimizations
	Chapter 5
	Virtual Memory
	Virtual Memory
	More Motivation for VM
	Pages and Segments
	4 Questions
	4 Questions
	Page Tables
	Page Table Example
	Combining Segmentation with Paging
	Fast Address Translation
	Translation Lookaside Buffers (TLB)
	TLB Placement
	TLB Placement
	Alpha 21264 TLB

