
Chapter 4

Instruction-Level 
Parallelism:

Software Approaches
Part 1

Slides: D. Patterson, W. Gross, V. Hayward, T. Arbel

1



Exposing ILP in the Compiler

• Last chapter: exploiting ILP in hardware.
– Binary compatibility

• What if we can change the ISA?
• Static scheduling, branch prediction and 

issue
– Requires advanced compiler techniques

• The ideas in this chapter are behind two of 
the newest ISAs: The Intel Itanium 
(workstation, server) and the Transmeta
Crusoe (low-power embedded)

• Also used in DSP chips

2



Basic Compiler Scheduling

• The idea: keep the pipeline full
– Avoid stalls due to hazards

• Scheduling 
– find a sequence of instructions that can be overlapped 

in the pipeline

• We will look at scheduling in the compiler. 
The hardware then executes the scheduled 
code in-order

• How do we achieve our goal of keeping the 
pipeline full ?

3



Basic Compiler Scheduling

• A dependent instruction must be separated 
from the source instruction by a distance in 
clock cycles equal to the pipeline latency of 
the source instruction

• For example, in a pipeline with forwarding
– latency of the EX stage (ALU) is 0.
– The data memory latency is 1

• A compiler’s ability to perform this 
scheduling depends on:

– The amount of ILP in the program
– The latencies of the functional units

4



Basic Compiler Scheduling

• Assume the classic 5-stage integer pipeline
• Integer ALU latency is 0 CC
• Integer load latency is 1 CC
• Branch delay is 1 CC
• Fully pipelined FUs (assume no structural hazards)
• Assume the following FP latencies (averages):

Producer Consumer Latency (CCs)

FP ALU op Another FP ALU op 3

FP ALU op Store double 2

Load double FP ALU op 1

Load double Store double 0
5



Loop Example

• Adding a scalar to a vector (loop is parallel 
since the body of each iteration is 
independent)

for (i = 1000; i > 0; i=i–1)
x[i] = x[i] + s;

Loop: L.D F0,0(R1) ;F0=array element
ADD.D F4,F0,F2 ;add scalar from F2
S.D F4,0(R1) ;store result
DADDUI R1,R1,#-8 ;decrement pointer 8 bytes 
BNE R1,R2,Loop ;branch R1!=R2

6



Loop Example

• Unscheduled code: 10 clock cycles

1 Loop: L.D F0,0(R1)
2 stall
3 ADD.D F4,F0,F2
4 stall
5 stall
6 S.D F4,0(R1)
7 DADDUI R1,R1,#-8
8 stall
9 BNE R1,R2,Loop
10 stall

7



Loop Example

• Scheduled code: 6 cycles
• Not trivial: S.D. depends on DAADUI. Swap 

them but change address
• Problem: only doing work on the array 

element in 3/6 cycles. Other 3 are for loop 
overhead 

1 Loop: L.D F0,0(R1)
2 DADDUI R1,R1,#-8
3 ADD.D F4,F0,F2
4 stall
5 BNE R1,R2,Loop ; delayed branch
6 S.D F4,8(R1) ; altered

8



Loop Unrolling

• Unroll the loop
– Replicate the body of the loop many times
– Adjust the loop termination code

• Eliminating the branch allows instructions 
from different iterations to be scheduled 
together

– In this case we can eliminate the data stall

9



Unroll Loop Four Times 
(straightforward way)

10

Rewrite loop to 
minimize stalls?

1 Loop:L.D F0,0(R1)
2 ADD.D F4,F0,F2
3 S.D F4,0(R1) ;drop DADDUI & BNE
4 L.D F6,-8(R1)
5 ADD.D F8,F6,F2
6 S.D F8,-8(R1) ;drop DADDUI & BNE
7 L.D F10,-16(R1)
8 ADD.D F12,F10,F2
9 S.D F12,-16(R1 ;drop DADDUI & BNE
10 L.D F14,-24(R1)
11 ADD.D F16,F14,F2
12 S.D F16,-24(R1)
13 DADDUI R1,R1,#-32 ;alter to 4*8
14 BNE R1,R2,LOOP

14 + 4x(1+2) + 2= 28 clock cycles, or 7 per iteration
Assumes R1 is multiple of 32 (# loops a multiple of 4)

1 cycle stall
2 cycles stall

1 cycle stall



Unrolled Loop Detail

• Do not usually know upper bound of loop
• Suppose it is n, and we would like to unroll 

the loop to make k copies of the body
• Instead of a single unrolled loop, we 

generate a pair of consecutive loops:
– 1st executes (n mod k) times and has a body that is 

the original loop
– 2nd is the unrolled body surrounded by an outer loop 

that iterates (n/k) times
– For large values of n, most of the execution time will 

be spent in the unrolled loop

11



Unrolled Loop That Minimizes Stalls

• What assumptions 
made when moved 
code?

– OK to move store past 
DADDUI even though 
changes register

– OK to move loads before 
stores: get right data?

– When is it safe for 
compiler to do such 
changes?

1 Loop:L.D F0,0(R1)
2 L.D F6,-8(R1)
3 L.D F10,-16(R1)
4 L.D F14,-24(R1)
5 ADD.D F4,F0,F2
6 ADD.D F8,F6,F2
7 ADD.D F12,F10,F2
8 ADD.D F16,F14,F2
9 S.D F4,0(R1)
10 S.D F8,-8(R1)
11 DADDUI R1,R1,#-32
12 S.D F12,-16(R1)
13 BNE R1,R2,LOOP
14 S.D F16,8(R1) ; 8-32 = -24

14 clock cycles, or 3.5 per iteration

12



Compiler Perspectives on Code Movement
• Compiler concerned about dependencies in program
• Whether or not a HW hazard depends on pipeline
• Try to schedule to avoid hazards that cause 

performance losses
• (True) Data dependencies (RAW if a hazard for HW)

– Instruction i produces a result used by instruction j, or
– Instruction j is data dependent on instruction k,  and instruction k 

is data dependent on instruction i.

• If dependent, can’t execute in parallel
• Easy to determine for registers (fixed names)
• Hard for memory (“memory disambiguation” problem): 

– Does 100(R4) = 20(R6)?
– From different loop iterations, does 20(R6) = 20(R6)?

13



Where are the name dependencies?

1 Loop:L.D F0,0(R1)
2 ADD.D F4,F0,F2
3 S.D F4,0(R1) ;drop DADDUI & BNE
4 L.D F0,-8(R1)
5 ADD.D F4,F0,F2
6 S.D F4,-8(R1) ;drop DADDUI & BNE
7 L.D F0,-16(R1)
8 ADD.D F4,F0,F2
9 S.D F4,-16(R1 ;drop DADDUI & BNE
10 L.D F0,-24(R1)
11 ADD.D F4,F0,F2
12 S.D F4,-24(R1)
13 DADDUI R1,R1,#-32 ;alter to 4*8
14 BNE R1,R2,LOOP
15 NOP

How can remove them?
14



Where are the name dependencies?

1 Loop:L.D F0,0(R1)
2 ADD.D F4,F0,F2
3 S.D F4,0(R1) ;drop DADDUI & BNE
4 L.D F6,-8(R1)
5 ADD.D F8,F6,F2
6 S.D F8,-8(R1) ;drop DADDUI & BNE
7 L.D F10,-16(R1)
8 ADD.D F12,F10,F2
9 S.D F12,-16(R1) ;drop DADDUI & BNE
10 L.D F14,-24(R1)
11 ADD.D F16,F14,F2
12 S.D F16,-24(R1)
13 DADDUI R1,R1,#-32 ;alter to 4*8
14 BNE R1,R2,LOOP
15 NOP

The Orginal“register renaming”
15



Compiler Perspectives on Code 
Movement

• Name dependencies are hard to discover for memory 
Accesses 

– Does 100(R4) = 20(R6)?
– From different loop iterations, does 20(R6) = 20(R6)?

• Our example required compiler to know that if R1 
doesn’t change then:

0(R1) ≠ -8(R1) ≠ -16(R1) ≠ -24(R1)

There were no dependencies between some loads and 
stores so they could be moved by each other

16



Steps Compiler Performed to Unroll
• Check OK to move the S.D after DADDUI and 

BNEZ, and find amount to adjust S.D offset
• Determine unrolling the loop would be useful by 

finding that the loop iterations were independent
• Rename registers to avoid name dependencies
• Eliminate extra test and branch instructions and 

adjust the loop termination and iteration code
• Determine loads and stores in unrolled loop can be 

interchanged by observing that the loads and 
stores from different iterations are independent

– requires analyzing memory addresses and finding that they do 
not refer to the same address.

• Schedule the code, preserving any dependences 
needed to yield same result as the original code

17



Drawbacks

• Code length (an issue for embedded 
processors)

• Uses lots of registers
– “Register pressure”
– Could be a problem with aggressive unrolling and 

scheduling, especially on multiple issue machines

18



Multiple Issue

• Consider a simple statically scheduled 2-issue MIPS

2.4 cc per iteration

19



Static Branch Prediction

• We saw this idea earlier
– Delayed branches

20



Static Branch Prediction Strategies

• Predict-taken
– Midprediction rate = untaken branch frequency
– SPEC: 34% misprediction (9% to 59%)

• Predict based on branch direction
– E.g. predict forward-going branches as not taken and 

backwards-going branches as taken

• Collect profile information by running the 
program a few times. Recompile with this 
profile information. 
– Studies have showed that even when the data changes 

the profile is pretty accurate

21



Static Branch Prediction

• Static branch prediction is useful when:
1.Branch delays are exposed by architecture
2.Assisting dynamic predictors (IA-64)
3.Determining which code paths are more frequent (for 

code scheduling)

22



Static Multiple Issue: VLIW

• Recall superscalar multiple-issue processors:
– Decide how many instructions to issue on-the-fly

• Statically scheduled superscalar:
– HW to check for dependencies between instructions in 

a packet and between instructions in a packet and ones 
already in the pipeline

• What if we do the dependence checking in 
the compiler?

– Format an instruction packet with either no 
dependencies or at least indicate if they are present

– Simpler hardware

23



VLIW

• Very long instruction word (VLIW)
• Idea has been around for a long time
• 64 to 128 bit packets
• Drawback: they can be inflexible. 

– Requires recompilation for different versions of the 
hardware

• Latest versions use software to assist 
hardware decisions (EPIC IA-64)

24



The VLIW Idea

• Multiple, independent FUs
• Find independent operations and package 

them together into a very long instruction 
word

• Eliminates the expensive hardware that does 
this in a superscalar

• Superscalar processors are especially 
expensive for wide issue widths (e.g > 4) so 
VLIW machines tend to focus on issue
widths of > 4 

25



VLIW

• E.g. 5-issue VLIW
– 1 integer (incl. branch)
– 2 FP
– 2 memory ref.

• Code must have enough parallelism to fill 
the operation slots and keep the FUs busy

• Find this parallelism by loop unrolling and 
scheduling 

26



VLIW Example

•9 cycles

•23 operations

•2.5 operations / cycle

•Efficiency (percent of available slots used) = 60%

•Large number of registers used ! 27



VLIW Issues

• Increased code size
– Need to aggressively unroll loops
– Waste bits whenever instructions are not full
– Use clever encoding or compression

• Limitations of lock-step operation 
– No hazard detection h/w
– A stall in one FU must stall the whole processor (can’t predict 

cache stalls)
– Recent processors relax this and use h/w to allow 

unsynchronized execution
• Binary code compatibility

– Different pipeline organizations require different code (i.e. 
more FUs)

– One solution: object code translation (Crusoe: rapidly 
developing)

– Another solution: relax this approach (IA-64)

28



Chapter 4

Instruction-Level 
Parallelism:

Software Approaches
Part 2

Slides: D. Patterson,W. Gross, V. Hayward, T. Arbel

29



Advanced Compiler Support

• We will study techniques used by modern 
compilers such as gcc

• Dependencies: true and name
• This concept also applies to high-level code
• Compilers can detect parallelism in high-

level code that hardware would be blind to

for (i = 1000; i > 0;i=i-1)
x[i] = x[i] + s

30



Loop-Carried Dependencies

for (i = 1000; i > 0;i=i-1)
x[i] = x[i] + s

• If data accesses in an iteration depend on 
data values produced in earlier iterations we 
say there is a loop-carried dependence

• This is a parallel loop since there are no 
loop-carried dependencies.

– Except for the “induction variable” i, but this can be 
recognized and eliminated (e.g. loop unrolling)

31



Detecting and Exposing Loop-Level 
Parallelism

• Inspect the code to detect name and data 
dependencies

• Name dependencies can be eliminated by 
using more storage (“software renaming”) 

– Left with a chain of data dependencies

• If the data dependency chain can be 
broken, then the loop has some parallelism

• If all data dependencies are within one 
iteration, the loop is parallel

32



Loop-Carried Dependencies

• Dependencies can exist between statements in a 
block or across blocks

• Example: recurrences
– A variable is defined based on the value of that variable in an 

earlier iteration

e.g.

for (i=0;i<=100;++i)
y[i] = y[i-5] + y[i]

Carries a dependency with a dependence distance of 5

33



Finding Dependencies in Loops

• Need to analyze memory references to look 
for ones that refer to the same addresses

• Difficult in the general case

e.g. X[Y[i]]

34



Finding Dependencies in Loops

• Consider finding dependencies in the case 
when the array indices are “affine”

• An affine index has the form ai + b where i
is the loop index and a and b are constants

• To detect a dependence, we need to 
determine if two affine array indices are 
equal. i.e

ai + b = ci + d

35



GCD Test

• A sufficient test to test for the absence of 
a dependency is the GCD test:

• for references ai + b and ci + d, if a 
loop dependency exists, then GCD(c,a) 
divides (d-b)

– x divides y if y/x is an integer and there is no 
remainder

• Therefore, do the GCD test. If GCD(c,a) 
does not divide d-b then there is no 
dependency.

– However, the case exists where GCD(c,a) divides d-b
and there is still no dependency. (because the loop 
bounds are not considered)

36



Examples of GCD Test

for(i=1;i<=100;++1)
x[2i+3] = x[2i] + 1.0

• GCD(2,2) does not divide -3
– No dependency is possible

for(i=1;i<=100;++1)
x[2i+3] = x[2i+1] + 1.0

• 2 divides -2
– dependency is possible

• In general, deciding if a dependency definitely exists 
requires an algorithm with an exponential number of steps 
(“NP-complete”) and is not practical

– A few important sub cases are implemented in modern compilers

37



Classifying Dependencies

• In addition to detecting the presence of 
dependencies, compilers want to classify the type of 
dependencies

• E.g. Find the dependencies in:

for(i=1;i<=100;i=i+1){
Y[i] = X[i] / c   /* S1 */
X[i] = X[i] + c   /* S2 */
Z[i] = Y[i] + c   /* S3 */
Y[i] = c – Y[i]   /* S4 */

}

True dependence

Antidependence

Output dependence

38



Example cont’d

for (i=1;i<100;i=i+1){
/* Y renamed to T to remove o.d. */
T[i] = X[i] / c;
/* X renamed to U to remove a.d. */
U[i] = X[i] + c;
/* Y renamed to T to remove a.d. */
Z[i] = T[i] + c;
Y[i] = c – T[i];

}

• Second statement is now independent
• Third and fourth only dependent on first

39



Compiler Loop-Level Transformations
• Transform this loop to make it parallel

for (i=1; i < 100; i++) {
a[i] = b[i] + c[i];    /* S1 */
b[i] = a[i] + d[i];    /* S2 */
a[i+1] = a[i] + e[i];  /* S3 */

}

40



Dependence Analysis

for (i=1; i < 100; i++) {
a[i] = b[i] + c[i];    /* S1 */
b[i] = a[i] + d[i];    /* S2 */
a[i+1] = a[i] + e[i];  /* S3 */

}

Output dependency 
(loop-carried)

Antidependency
(not loop-carried)

true data dependency
(not loop-carried)

true data dependency
(loop-carried)

41



Dependence Analysis

a[1] = b[1] + c[1];   /* S1 */
b[1] = a[1] + d[1];   /* S2 */
a[2] = a[1] + e[1];   /* S3 */
a[2] = b[2] + c[2];   /* S1 */
b[2] = a[2] + d[2];   /* S2 */
a[3] = a[2] + e[2];   /* S3 */
a[3] = b[3] + c[3];   /* S1 */
b[3] = a[3] + d[3];   /* S2 */
a[4] = a[3] + e[3];   /* S3 */

…

• S3 does no useful work as its result is 
overwritten by S1 (except on last iteration)

42



Remove S3

for (i=1; i < 100; i++) {
a[i] = b[i] + c[i];    /* S1 */
U[i] = a[i] + d[i];    /* S2 */

}
a[100] = a[99] + e[99];

• Remove antidependence by software 
renaming

• No loop carried dependencies (parallel loop)

43



Another Example of LLP

for (i=1; i < 100; i++) {
a[i] = a[i] + b[i];    /* S1 */
b[i+1] = c[i] + d[i];  /* S2 */

}

• No dependence from S1 to S2
• Can this loop be made parallel?
• No cycles in the dependencies, so yes!

True Dep (loop carried)

44



Transformed Parallel Loop

a[1] = a[1] + b[1]
for (i=1; i <= 99; i++) {
b[i+1] = c[i] + d[i];     
a[i+1] = a[i+1] + b[i+1]; 
}
b[101] = c[100] + d[100]

45



Algebraic Optimization of 
Recurrences

• E.g.  sum = sum + x;

• Unroll a loop with this recurrence 5 times
sum = sum + x1 + x2 + x3 + x4 + x5;
– 5 dependent operations

• Algebraic optimization

sum = ((sum + x1) + (x2 + x3)) + (x4 + x5)

– 3 dependent operations

46



Arithmetic Techniques

• Transformations based on associative and 
commutative properties of arithmetic

– not true for limited range and precision, so be careful…
– Compilers usually will not do these unless explicitly 

enabled

47



Back Substitution

• E.g. replace 

DADDUI R1,R2,#4  /* a = b + 4 */
DADDUI R1,R1,#4   /* a = a + 4 */

with

DADDUI R1,R2,#8 /* a = b + 8 */

48



Tree Height Reduction

49



Software Pipelining

• The general idea of these optimizations is 
to uncover long sequences of statements 
without control statements

• Reorganize loops to interleave instructions 
from different iterations

– This is the software counterpart to what Tomasulo’s
algorithm does in hardware

• Dependent instructions within a single loop 
iteration are then separated from one 
another by an entire loop body 

– Increases possibilities of scheduling without stalls

50



Software Pipelining

Iteration 
0 Iteration 

1 Iteration 
2 Iteration 

3 Iteration 
4

Software- 
pipelined 
iteration

51



Software Pipelining Example

Loop: L.D. F0,0(R1)
ADD.D F4,F0,F2
S.D F4,0(R1)
DADDUI R1,R1,#-8
BNE R1,R2,LOOP

• 10 cycles

52



Step 1: Symbolic Loop Unrolling

ITER i L.D. F0,0(R1)
ADD.D F4,F0,F2
S.D F4,0(R1)

ITER i+1 L.D. F0,0(R1)
ADD.D F4,F0,F2
S.D F4,0(R1)

ITER i+2 L.D. F0,0(R1)
ADD.D F4,F0,F2
S.D F4,0(R1)

53



Step 2: Select Instructions from 
Different Iterations

ITER i L.D. F0,0(R1)
ADD.D F4,F0,F2
S.D F4,0(R1)

ITER i+1 L.D. F0,0(R1)
ADD.D F4,F0,F2
S.D F4,0(R1)

ITER i+2 L.D. F0,0(R1)
ADD.D F4,F0,F2
S.D F4,0(R1)

54



Step 3. Combine into loop and add 
init and cleanup code

INIT CODE

Loop: S.D. F4,16(R1) ;stores into M[i]
ADD.D F4,F0,F2  ;adds to M[i-1]
L.D F0,0(R1)  ;loads M[i-2]
DADDUI R1,R1,#-8
BNE R1,R2,LOOP

CLEAN UP CODE

• 5 clock cycles (assuming DAADUI scheduled before the 
ADD.D and the L.D is scheduled in the branch delay slot)

55



Software Pipelining

• Advantage: yields shorter code than loop 
unrolling and uses fewer registers

• Software pipelining is crucial for VLIW 
processors

– The above example could be compiled into one 
instruction

• Often, both software pipelining and loop 
unrolling are used

56



Global Code Scheduling

• Things get complex if there is control flow 
inside the loop this requires moving 
instructions across branches

– global code scheduling

• Find the the longest sequence of dependent 
calculations (critical path) 

• Compress the critical path to the shortest 
sequence of instructions that preserves 
control and data dependencies

• We will not cover this topic

57



Chapter 4

Instruction-Level 
Parallelism:

Software Approaches
Part 3

Slides: D. Patterson,W. Gross, V. Hayward, T. Arbel

58



Hardware Support For Exposing 
Parallelism at Compile Time

• Recent hardware adds support to facilitate 
the job of compilers

– Conditional instructions
– Hardware support for compiler speculation

59



Conditional Instructions

• Conditional (or “predicated”) instructions
– Refer to a condition
– If the condition is true, then execute the instruction 

normally
– If the condition is false, cancel the instruction (the 

execution continues as if the instruction was a nop)

• Can be used to eliminate branches
– Control dependence is converted to a data dependence
– Moves the condition evaluation from near the front of 

the pipeline to the end of the pipeline (register write)
– Could improve performance

60



Conditional Moves

if (a == 0)
s = t;

BNEZ R1, skip
ADDU R2, R3, R0

Skip:

CMOVZ R2, R3, R1

• Control dependence has been converted to a data 
dependence

61



Example

• Absolute value

A = abs(b)

if (b < 0) {a = -b} else {a = b}

• Implement as a pair of conditional moves or 
as one unconditional move (a = b) and one 
conditional (a = -b)

62



Conditional Instructions

• MIPS, Alpha, PowerPC, SPARC and x86 all support 
conditional moves

• IA-64 supports full predication !
– Every instruction is conditional 
– Can convert blocks of code that are branch dependent
– More complex (can lower clock rate)

• Example (dual issue)

63

First slot Second slot
LW R1,40(R2) ADD R3,R4,R5

LWC R8,0(R10),R10 ADD R6,R3,R7

BEQZ R10,L

LW R9,0(R8)

speculation

First slot Second slot
LW R1,40(R2) ADD R3,R4,R5

ADD R6,R3,R7

BEQZ R10,L

LW R8,0(R10)

LW R9,0(R8)



Compiler Speculation with Hardware 
Support

• To implement speculation a compiler has to move 
control dependent instructions before a branch
– Predicated (conditional) instructions provide one way to 

speculate

• In many cases we would like to move instructions 
even before the condition evaluation (predicated 
instructions will not work here)
1. Need to find instructions that can be speculatively moved 

(with possible register renaming) and not affect data flow
2. Need to ignore exceptions in speculated instructions until we 

know that they should really occur
3. Need to be able to speculatively exchange loads and stores 

or stores and stores which might have address conflicts

• Need h/w support for 2 and 3

64



Compiler Speculation Example

if (a == 0) then a = b else a = a + 4

LD R1,0(R3) ; load A
BNEZ   R1,L1 ; test A
LD R1,0(R2) ; then clause
J L2 ; skip else

L1: DADDI  R1,R1,#4 ; else clause
L2: SD R1,0(R3) ; store A

65



Compiler Speculation Example

• Assume the “then” clause is almost always exectuted
• With compiler speculation:

LD R1,0(R3) ; load A

LD R14,0(R2)   ; spec load B

BNEZ R1,L3       ; other branch of if 

DADDI R14,R1,#4 ; else clause

L3: SD R14,0(R3) ; non spec store

• The “then” clause is executed speculatively (hoping it 
is frequent case)

• If prediction is incorrect, DADDI will overwrite the 
incorrect value in R14

66



Exceptions

• Exception behaviour has been changed by 
the transformation

– The speculative load could generate a page fault that 
would not have happened if the load was left in the 
control dependent code

• To deal with this, processors introduce 
hardware mechanisms to preserve exception 
behaviour of speculative code

– Speculation check instructions (pseudo nonexcepting
loads) 

– Poison bits to turn off register writes

• Details are skipped

67



Transmeta Crusoe

• Code compatible with x86
• Low power 

• VLIW
• 6-stage in-order integer pipeline
• 10-stage floating point pipeline

• x86 instructions translated on-the-fly into 
Crusoe instructions in firmware

– “Code Morphing™”

68



Crusoe Instruction Format

69



Code Morphing

• x86 code interpreted instruction-by-
instruction

• Basic blocks cached and reused
• Speculative reordering

– Shadowed register file
– Speculative loads and conditional moves

• Low-power features
– Dynamic voltage and frequency scaling !

70



Summary

• Complex compiler optimizations needed to 
extract significant amounts of ILP

• As issue rate increases, the gap between 
peak and sustained performance grows 
quickly

• No “silver bullet” approach to building 
multiple-issue processors

• Over time, techniques from h/w and s/w
techniques are sneaking into the other

71



Guess the Processors

Issue 
Rate

Clock 
Rate 
(2001)

Transistors 
w/without 
caches (M)

Power 
(W)

SPECbase
CPU2000 
int/fp

4 1 GHz 15 / 6 107 561/643

3 2 GHz 42 / 23 67 636/648

3 1 GHz 28 / 9.5 36 454/329

6 0.8 GHz 25 / 17 130 379/714

Alpha 21264

Pentium 4

Pentium 3

Itanium

72


	Chapter 4
	Exposing ILP in the Compiler
	Basic Compiler Scheduling
	Basic Compiler Scheduling
	Basic Compiler Scheduling
	Loop Example
	Loop Example
	Loop Example
	Loop Unrolling
	Unroll Loop Four Times (straightforward way)
	Unrolled Loop Detail
	Unrolled Loop That Minimizes Stalls
	Compiler Perspectives on Code Movement
	Where are the name dependencies?
	Where are the name dependencies?
	Compiler Perspectives on Code Movement
	Steps Compiler Performed to Unroll
	Drawbacks
	Multiple Issue
	Static Branch Prediction
	Static Branch Prediction Strategies
	Static Branch Prediction
	Static Multiple Issue: VLIW
	VLIW
	The VLIW Idea
	VLIW
	VLIW Example
	VLIW Issues
	Chapter 4
	Advanced Compiler Support
	Loop-Carried Dependencies
	Detecting and Exposing Loop-Level Parallelism
	Loop-Carried Dependencies
	Finding Dependencies in Loops
	Finding Dependencies in Loops
	GCD Test
	Examples of GCD Test
	Classifying Dependencies
	Example cont’d
	Compiler Loop-Level Transformations
	Dependence Analysis
	Dependence Analysis
	Remove S3
	Another Example of LLP
	Transformed Parallel Loop
	Algebraic Optimization of Recurrences
	Arithmetic Techniques
	Back Substitution
	Tree Height Reduction
	Software Pipelining
	Software Pipelining
	Software Pipelining Example
	Step 1: Symbolic Loop Unrolling
	Step 2: Select Instructions from Different Iterations
	Step 3. Combine into loop and add init and cleanup code
	Software Pipelining
	Global Code Scheduling
	Chapter 4
	Hardware Support For Exposing Parallelism at Compile Time
	Conditional Instructions
	Conditional Moves
	Example
	Conditional Instructions
	Compiler Speculation with Hardware Support
	Compiler Speculation Example
	Compiler Speculation Example
	Exceptions
	Transmeta Crusoe
	Crusoe Instruction Format
	Code Morphing
	Summary
	Guess the Processors

