Lecture 1 Review

- Introduction
- History of computers
- Performance determined by
 - Technology
 - Architecture
 - Compiler
- We will focus mostly on architecture and compiler

Lecture 2 Review

- Start of Chapter 1
- 3 levels of abstraction
 - Instruction Set Architecture
 - Organization
 - Hardware
- Trends → Architectural improvement

Lecture 3 Review

- Cost
 - Yield
 - IC cost model
 - Cost of IC ~ (Die Area) $^{\beta}$ ($\beta = 2 \rightarrow 4$)
- Response (execution) time
- Throughput
- Measuring Performance
 - Performance always measured relative to another machine (speedup n)
- Different times
- Benchmarks none are perfect
 - SPEC is the best we have

Lecture 4 Review

- Summarizing performance
 - Execution time is the only reliable measure
 - Arithmetic mean tracks execution time
 - Can use weights with the arithmetic mean
 - If given ratios, use the geometric mean
- Quantitative Principles
 - 1. Make the common case fast
 - 2. Principle of locality
 - 3. Parallelism
- Make the common case fast
 - Amdahl's Law
 - Speedup = $1 / ((1 f_{enh}) + (f_{enh}/s_{enh}))$

Lecture 5 Review

- Ahmdahl's Law (law of diminishing returns)
 - Speedup = $1 / ((1 f_{enh}) + (f_{enh}/s_{enh}))$
 - Can not speed up a task by more than $1/(1-f_{enh})$!
- CPU performance equation
 - \blacksquare CPUtime = IC * CPI * CC
 - ■Depends on all three factors tradeoff

Lecture 6 Review

Principle of Locality

- Temporal locality: If you recently used an item, it is likely to be used again sooner rather than later
- Spatial locality: If you access an item, the next few accesses are likely to be items close by.

Parallelism

· Perform many operations simultaneously