
ECSE 425
Computer Organization and Architecture

Assignment 3

Due: March 1, 2007 at 4:00 PM in the Trottier assignment box.

• You may make use of reasonable assumptions of your own for data that might be

missing in the problem texts, provided that they are explicitly and clearly stated.

• You may submit a partial answer to a problem. The grading will account for this.

• Their main purpose of this assignment is to help you attain an understanding of
the course material (the primary goal) and, in addition, to help you prepare for the
exams.

Question 1: Code Templates - (20%)

Compilers use libraries of “code templates” to translate individual statements of a high-
level language into sequences of machine instructions which can be strung together to
form a complete program. The purpose of this exercise is to design such templates to
translate simple integer constructs into MIPS-64 assembly.

Register allocation is not performed at the template level. To deal with this, we assume
that all scalar integer variables are stored in “pseudo-registers.” A pseudo register is used
in the assembly code template as if it was a real register, but its final identity is left
unspecified. It is the job of the “register allocator” to later associate pseudo-registers with
real registers or memory locations.

We use the following notation:

• An integer variable x in C is represented in the templates by a pseudo-register
called Rx (i.e., Rx is the register that holds the value of x).

• Temporary integers are represented by numbered pseudo-registers T0, T1, etc.
• Labels are given generic names like L0, L1, etc.
• An unspecified C statement stmt1 is represented by S1, stmt2 by S2, etc.
• An unspecified C expression expr1 is represented by E1, etc.

 1

For example:

 if (expr1) stmt1;
 else stmt2;

could yield the following template:

 beqz E1, L0
 S1
 j L1
L0: S2
L1:

Now, using MIPS64 instructions, write one template for each of the following C
statements. Assume that all variables are 32-bit integers, and that all variables are already
loaded into registers. Comment your code.

1. *a

2. a <<= (b == c) // shifts a by one bit if b equals c

3. a = expr1 || expr2

4. a[expr] = a[expr-1] + b[expr+1];
Assume that the base addresses of arrays a and b are in Ra and Rb,
respectively. Be efficient with indexing the arrays.

5. a -= (++a)

6. a -= (a++)

7. a & 0xAAAABBBBCCCCDDDD // this is a **64-bit** quantity

8. do stmt while(expr);

9. while (expr) stmt;

10. !a

Notes:

• Use only the MIPS64 instructions listed at the back of the textbook.
• In C, an expression is false if it evaluates to zero; it is true otherwise.
• Be careful with the increment (++) operator. Note how it changes the values of

variables.

 2

Question 2: Pipelining and Code Scheduling (20%)

Consider the three functions foo1(), foo2(), foo3() listed below. Notice the different
ways they allocate storage for the variables.

extern float glob_A[], glob_B[];
 int glob_i, glob_c = 0;

foo1()
{
 for (glob_i = 0; glob_i < 100; ++glob_i) {
 if (glob_A[glob_i] > glob_B[glob_i + 1]) {
 glob_c *= glob_i + 1;
 }
 }
 return (glob_c);
}

foo2()
{
 register int rloc_i;

 for (rloc_i = 0; rloc_i < 100; ++rloc_i) {
 if (glob_A[rloc_i] > glob_B[rloc_i + 1]) {
 glob_c *= rloc_i + 1;
 }
 }
 return (glob_c);
}

foo3()
{
 float loc_A[100], loc_B[100];
 int loc_c = 0;
 register int rloc_i;

 for (rloc_i = 0; rloc_i < 100; ++rloc_i) {
 if (loc_A[rloc_i] > loc_B[rloc_i + 1]) {
 loc_c *= rloc_i + 1;
 }
 }
 return (loc_c);
}

Using a SPARC machine, compile this code with the gnu compiler gcc using the -S
option to get the assembly code output. Compile it a second time with the -O2 optimizer
option and get the assembly code output.

For each version of the foo functions (both unoptimized and optimized), isolate its code
in the assembly output: the code of each function starts at the entry point “_foo?” and
finishes at the return instruction “ret”. Try to understand the assembly code by referring
to the SPARC manual (available on WebCT).

 3

(a) In the assembly code for each version of the foo functions, mark the assembly
instructions that correspond to the following C statements:

• Initialization of the for loop (glob_i = 0, rloc_i = 0)
• Start of the loop iterations
• Evaluation of the loop condition (glob_i < 100, rloc_i < 100)
• Evaluation of the if statement (glob_A[glob_i] > glob_B[glob_i+1], …)
• Body of the if statement (glob_c *= glob_i+1, …)
• Update of the index (++glob_i, …)
• End of the loop iterations

The goal of doing this is to demonstrate that you have understood the assembly code
and know how it corresponds to the original C statements. Don’t worry that your
answer isn’t 100% “exact.”

(b) For the unoptimized code, estimate the total number of memory transactions in each
function (recall that memory transactions consist of loads for instructions, loads for
data, and stores for data). For your estimation, ignore instructions outside of loop
iterations, and assume that the if statement always evaluates to true. Explain the
differences in the number of memory transactions among the functions (how are the
two arrays and two integers handled differently?).

(c) For the optimized code, estimate the total number of memory transactions in each
function. Explain the reduction in the number of memory transactions after
optimization (give examples). In addition, give examples of where the compiler
accounted for the fact that the target CPU is pipelined (watch for delay slots and
certain code scheduling techniques).

Question 3: Integer Pipeline (40%)

For all parts of this question, assume that all instruction and data memory accesses are
cache hits (i.e., all memory accesses take one clock cycle to complete).

(a) Consider the code sequence

DADD R1, R2, R3
DADD R3, R4, R5
DADD R5, R3, R4
DADD R6, R7, R8

This code is executed in the 5-stage MIPS pipeline with forwarding hardware. Show
the timing of this code. At the end of the 5th cycle, which registers in the register file
will be read, and which registers in the register file will be written?

(b) For the code in (a), what useful data (if any) is being forwarded during cycle 4? What
about cycle 5?

 4

Consider:

1. LOOP: LD R2, 0(R3) \\ load number a
2. SLT R1, R2, R0 \\ R1 = 1 if a < 0, R1 = 0 otherwise
3. BEQZ R1, OUT \\ exit if a >= 0
4. NOP \\ delay slot
5. DSUB R2, R2, R0 \\ negate
6. SD R2, 0(R3) \\ store back a
7. DADDI R3, R3, #8 \\ increment pointer
8. J LOOP \\ jump back
9. OUT: NOP \\ delay slot

Assume that this loop will iterate many times.

(c) For the above code, show the timing of the first loop iteration for the 5-stage MIPS
pipeline without any forwarding hardware. Hazard detection hardware still exists so
the instructions would know whether they should stall and how long they should stall.
Recall that hazard detection is done in the ID stage. Note the following for this
pipeline:

• Once a hazard is detected, the instruction currently in the ID stage stalls until the
hazard is cleared and then restarts its ID stage.

• Recall that a register can be written and read in the same clock cycle (the write is
done in the first half of the cycle, and the read is done in the second half of the
cycle).

• Conditional branches and jumps use delayed branches with one delay slot.
• The jump instruction computes its target address in the ID stage.

(d) List the pairs of instructions that cause data hazards in part (c), and explain for each
pair why the data hazard exists.

(e) Show the timing of the same sequence for the MIPS pipeline with forwarding
hardware (as before, show the first loop iteration).

(f) Schedule this code to minimize the number of stalls and NOPs. Show the timing of
the scheduled code.

(g) Consider this frequent instruction sequence (it can be used to implement “a = b”):

LD T1, d1(I1)
SD T1, d2(I2)

Draw additional forwarding path(s) and multiplexer(s) in Figure A.23 of the textbook
so SD does not stall in this instruction sequence.

 5

(h) Consider:

DADD R2, R4, R5
DADD R4, R2, R5
LW R5, 20(R2)
DADD R3, R5, R4

Show the timing of this code when it executes on the R4000 pipeline. Note that this
is not the same as the 5-stage MIPS pipeline (a description of the R4000 pipeline is
given in the textbook section A.6). What forwarding is done during execution? (Name
the instruction pairs and the pipeline stages involved.)

Question 4: FP Pipeline (20%)

Consider:

LOOP: L.D F0, 0(R2)
 L.D F4, 0(R3)
 MUL.D F0, F0, F4
 SUB.D F2, F0, F2
 DADDI R2, R2, #8
 DADDI R3, R3, #8
 DSUB R5, R4, R2
 BNEZ R5, LOOP
 NOP

The initial value of R4 is R2 + 100. This code is executed on the 5-stage MIPS integer
pipeline and the MIPS floating-point pipeline shown in textbook Figure A.31. The
pipelines have full forwarding hardware. When write-back contention occurs, the earliest
instruction gets priority and other instructions are stalled. Branches have one delay slot.

(a) Show the timing of the first iteration of this instruction sequence. Do not schedule

the instructions in the loop.

(b) Schedule this code in order to minimize the number of stalls and NOPs. Show the
timing of the scheduled code.

 6

