

ECSE 421

Group #5

Max Chau
Ching-Wai Chee
Simon Foucher
Jean-Mikael Lassonde
Winston Lin
Mathieu Perreault
Logan Smyth
Philip Tang
Danny Wu

System Testing Document

Page | 1

Table of Contents

1. Introduction ... 2

2. Traceability Matrix ... 3

3. System Tests ... 4

Test 1: The Up/Down buttons .. 4

Test 2: Elevator position awareness .. 5

Test 3: Elevator service span ... 5

Test 4: Floor button board inside elevators .. 6

Test 5: The Emergency button ... 6

Test 6: Open/Close door buttons .. 7

Test 7: System command priority hierarchy implementation 8

Test 8: Visual support of virtual system .. 8

Test 9: Blackout recovery ... 9

Test 10: Emergency timeout .. 9

Appendix 1 - Elevator Instructions OpenGL ... 10

Appendix 2 - Elevator Instructions MSP430 .. 11

Page | 2

1. Introduction

This document provides testing sequences for every functional requirement listed in
the SDD, as well as an overview of the expected results of the elevator system
project. This embedded system controls three virtual elevators servicing a twenty
floor building and offers a friendly Graphical User Interface (GUI) to display the
state of the elevators.

The system is divided into two major processing components which communicate
via a serial peripheral interface (SPI) bus channeled over an RS-232 serial data
cable. The first physical component, the central processing unit, is responsible for
maintaining the state of the virtual elevators based on user Input, decision making,
handles the SPI driver that receives commands from the second component, and
controls the GUI which displays on a monitor the state of the system. It is
implemented in hardware by a standard PC in a Linux environment, and the GUI is
displayed on standard computer screen, using ‘canned’ openGL low-level drivers.
The second major hardware component is implemented in a McGumps
Microprocessor board (running an MSP430 micro-processor). Its responsibility is to
capture all user input via a PS/2 keyboard and transmit them to the central
processing unit. Since the McGumps board is simulating user input for the internal
buttons of three elevators and the floor direction buttons on 20 floors, the system
contains an LCD screen to display which system is currently being emulated.

Page | 3

2. Traceability Matrix

Requirements SRS SDD STC

Does outcome

match

expected

results?

1. The Up/Down Buttons Sec 2.1 Sec 2.2.4, Sec 2.2.5 Sec 3.1 Yes

2. Elevator Position Awareness Sec 2.2 Sec 2.2.2, Sec 2.2.3 Sec 3.2 Yes

3. Elevator Service Span Sec 2.3

Sec 2.2.1, Sec 2.2.3,

Sec 2.2.5 Sec 3.3 Yes

4. Floor button Board Inside Elevators Sec 2.4 Sec 2.2.5 Sec 3.4 Yes

5. The Emergency Button Sec 2.5 Sec 2.1, Sec.2.2.5 Sec 3.5 Yes

6. Open/Close Door Buttons Sec 2.6 Sec 2.1, Sec.2.2.5 Sec 3.6 Yes

7. System command priority hierarchy

implementation Sec 2.7 Sec 2.2.2 Sec 3.7 Yes

8. Visual support of virtual system Sec 2.8 Sec 2.2.3 Sec 3.8 Yes

9. Blackout recovery Sec 2.9 Sec 2.2.2 Sec 3.9 Yes

10. Emergency Timeout Sec 2.10 Sec 2.2.2 Sec 3.10 Yes

Page | 4

3. System Tests

The following section outlines a list of tests designed to challenge the
implementation of all the proposed requirements. Each test outlines the
requirements it is meant to test, the sequence of commands to send to the system
as well as the expected results. To allow more flexibility while testing (in other
words, to avoid proposing specific pre-selected test sequences and ‘safe’ actions),
the test sequence has been written in high level manner. In order to convert the
high level operations described into specific keystrokes understood by the system,
please refer to Appendices 1 & 2 for a list of specific available keyboard commands.

Test 1: The Up/Down buttons

Meets Functional requirement 1: “There is one up/down signal per floor.
Whenever pressed, the microcontroller responds by sending an elevator to that location
with the intention of going in the direction signaled.”

Implementation: Button low level drivers implemented in the McGumps
Microprocessor board (See SDD Section 2.2.5). The event is handled in the central
processing station via a serial I/O driver (See SDD Section 2.2.4)

Test sequence:

3.1.1 For floor 1, press the up button and wait for the elevator.
3.1.2 For floor 2, press the up button and wait for the elevator.
3.1.3 For floor 2, press the down button and wait for the elevator.
3.1.4 Do step 3.1.2 and 3.1.3 for floor number 3 to 19.
3.1.5 For floor 20, press the down button and wait for the elevator.

Expected Result:

For each up button pressed, an elevator will come to the floor that requested it with
the intention to go up.

For each down button pressed, an elevator will come to the floor that requested it
with the intention to go down.

Page | 5

Test 2: Elevator position awareness

Meets Functional requirement 2: “Position feedback is sent by every elevator such
that the control system is always aware of all the elevator positions.”

Implementation: Since the elevators are implemented virtually, its position will be
generated by a sub system of the central processing station, responsible for
creating, operating and maintaining the virtual elevators (See SDD Section 2.2.2).
The elevator position feedback is also sent to the graphical user interface (GUI)
which is displayed on the computer monitor (See section SDD 2.2.3). The
communication is handled implicitly via a global variable elevator Object accessible
by all systems.

Test sequence:

3.2.1 Send a request to the elevator to go to an arbitrary floor and observe its
movement on the GUI.

Expected Result:

The elevator will be moving from its position to the requested floor in the GUI

Test 3: Elevator service span

Meets Functional requirement 3: “Any given elevator spans all the floors of the
building, such that any floor is accessible from all the others.”

Implementation: This is implemented at a low level in the Data Processing unit
(See SDD Section 2.2.1) by means of variable boundaries. It is also reflected in the
I/O drivers (See SDD Section 2.2.5): there are 20 valid floor buttons in each
elevator which can be pressed by the user, as well as in the GUI (See SDD Section
2.2.3 the virtual building displayed is 20 floors high)

Test sequence:

3.3.1 Request the elevator to go to all floors from 1 to 20.

Expected Result:

Each elevator should stop and open at each floor

Page | 6

Test 4: Floor button board inside elevators

Meets Functional requirement 4: “Each elevator is equipped with a number button
board.”

Implementation: Implemented by the PS/2 keyboard connected to the McGumps
Microprocessor board (See SDD Section 2.2.5)

Test sequence:

3.4.1 Request the elevator to go to an arbitrary floor using the keyboard

Expected Result:

The elevator should receive the request and go to the requested floor

Test 5: The Emergency button

Meets Functional requirement 5: “Each elevator is equipped with an
EMERGENCY button.”

Implemented in: Implemented by the PS/2 keyboard connected to the McGumps
Microprocessor board (See SDD Section 2.1: System Architecture for Hardware and
SDD Section 2.2.5 for software drivers)

Test sequence:

3.5.1 Press on the emergency button while the elevator is moving

Expected Result:

The elevator should stop at the closest floor, open its doors and will not accept
request until it is given the instruction to unjam.

Page | 7

Test 6: Open/Close door buttons

Meets Functional requirement 6: “Each elevator is equipped with an OPEN and
CLOSE door buttons.”

Implementation: Implemented by the PS/2 keyboard connected to the McGumps
Microprocessor board (See SDD Section 2.1: System Architecture for Hardware and
SDD Section 2.2.5 for software drivers)

Test sequence:

3.6.1 Press on the open button while the elevator is moving.
3.6.2 Press on the close button while the elevator is moving.
3.6.3 Press on the open button while the elevator is stationary.
3.6.4 Press on the close button while the elevator is stationary.

Expected Result:

3.6.1 Nothing should happen; the elevator should not accept the requests. The
elevator will stop at the next floor and open its doors if the open button is held.

3.6.2 Nothing should happen; the elevator should not accept the requests.

3.6.3 If the doors are closing or are closed, the doors should open.

3.6.4 If the doors are opening or are open, the doors should close.

Page | 8

Test 7: System command priority hierarchy implementation

Meets Functional requirement 7: “A certain priority of commands will be
maintained in the system.”

Implementation: Implemented in the Data Processing and decision making
software component (See SDD Section 2.2.2)

Test sequence:

3.7.1 Simulate a power outage.

3.7.2 Emergency mode within elevator is active, press any command (except the
button to disable the emergency mode).

3.7.3 Hold open door button.

3.7.4 Select a floor in the opposite direction of current travel.

Expected Result:

3.7.1 Elevator should go into emergency mode using backup power.

3.7.2 Elevator should not accept any request.

3.7.3 Elevator should not move while the doors are still open. The elevator will stop
at the next floor and open its doors if the elevator is moving.

3.7.4. The elevator will finish servicing requests in the same direction and then
proceed to service requests in the opposite direction of current travel.

Test 8: Visual support of virtual system

Meets Functional requirement 8: “A 3D visual interface will serve as visual support
for the Elevator System.”

Implementation: Implemented in the Graphical User Interface component (see
SDD Section 2.2.3)

Same test and result as Test 2

Page | 9

Test 9: Blackout recovery

Meets Functional requirement 9: “In case of a power outage, the system has a
‘recovery mode’ to set all elevators to ‘emergency mode’.”

Implementation: Implemented in the Data Processing and decision making
software component (See SDD Section 2.2.2)

Test sequence:

3.9.1 Same as 3.7.1

Expected Result:

3.9.1 Same as 3.7.1

Test 10: Emergency timeout

Meets Functional requirement 10: “The system is equipped with an emergency
timeout mechanism to avoid starvation of any requests.”

Implementation: Implemented in the Data Processing and decision making
software component (See SDD Section 2.2.2)

Test sequence:

3.10.1 Press up or down button and wait for more than five minutes.

Expected Result:

3.10.1 After five minutes, an alarm signal will activate.

Page | 10

Appendix 1 - Elevator Instructions OpenGL

There are two ways of controlling the elevators: directly from the GUI (Using the
commands outlined below), or from the MSP430 keyboard (Using the commands
outlined in Appendix 2)

Different sets of buttons have been assigned to different elevators and have been
divided in columns (see table below). In order to make a floor selection, first scroll
to it using the appropriate buttons, referring to the “Requested Floor:” label to
know the current selection. When the desired floor appears besides the Request
Floor button, press the floor select button to send out the request.

The specific function of each individual button is outlined in the following table:

 Elevator 1 Elevator 2 Elevator 3
Increment Floor Selection Q W E
Decrement Floor Selection A S D
Select current floor Selection Z C C
Emergency Button 1 2 3
Open Doors shift+Q shift+W shift+E
Close Doors Shift+A shift+S shift+D

For the buttons in the hallway, first select the button panel floor by pressing ‘R’ to
increment the floor selection, and ‘F’ to decrement the floor selection. The current
selected floor is written besides the “UP/DOWN – Floor xx” label, where xx refers to
the floor currently being operated on. Once on the desired floor, press V for UP and
B for down (see table below).

Controls Floors

First select the floor to operate on using:
R,F: Increment/Decrement floor selection

Then press:
V: Press UP button on selected floor
B: Press DOWN button on selected floor

Page | 11

Appendix 2 - Elevator Instructions MSP430

Keyboard Keys Actions
General options

Toggle between elevators

Elevator options for outside

Toggle between floors

Floor, elevator request Up and Down

Elevator options for inside

Choosing floor number

 Enter Confirm floor number

 Left

 Open door

 Right

Close door

 Space bar

Emergency stop button

