

ECSE 421

Group #5

Max Chau
Ching-Wai Chee
Simon Foucher
Jean-Mikael Lassonde
Winston Lin
Mathieu Perreault
Logan Smyth
Philip Tang
Danny Wu

System Design Document

Table of Contents

1. Introduction .. 3

2. Design Overview .. 3

2.1. System Architecture .. 3

2.2. System Operation ... 6

2.2.1. Central Processing Station: Application Logic 6

2.2.2. Central Processing Station: Data processing, Decision Making and
operations of virtual elevators .. 7

2.2.3. Central Processing Station: OpenGL Graphical User Interface (GUI) 7

2.2.4. Central Processing Station: Serial I/O Drivers 10

2.2.5. McGumps Microprocessor Board: I/O Drivers 10

3. Requirements Traceability Matrix ... 12

1. Introduction

This document provides a high level architectural overview of the elevator system
project, which controls three elevators servicing a twenty floor building. This
document outlines both the hardware and software components which will be
integrated in the final system, how they function individually and also how they will
be integrated in the final embedded system.

The system is divided into two major components communicating via an SPI bus
software interface channeled over an RS-232 serial data cable. The first physical
component is mostly responsible for main control and decision making and will be
implemented in hardware by a standard PC in a Linux environment. This component
will handle data processing, decision making, will control the position of the virtual
elevators, will display graphics and finally will handle serial communication with the
second major component. This second major component will be implemented in a
McGumps Microprocessor board. Its responsibility will be to capture all the user
input via a PS/2 keyboard and transmit them to the central processing unit. Since
the MSP will be simulating user input for the internal buttons of three elevators and
the floor direction buttons on 20 floors, the system will also contain an LCD screen
to tell the user which system is currently being emulated.

2. Design Overview

2.1. System Architecture
Figure 1 below depicts the overall system in the form of a deployment diagram.
The system will be constructed from the following components:

• Central Processing Station
This component monitors the overall elevator system and consists of an
ordinary computer. It is the primary graphical and audio interface for the
overall system and handles the majority of the elevator logic. Graphics will
be shown on the attached Monitor. Inputs specific for the monitoring
system will be provided by the attached standard Keyboard and Mouse.

o Application Logic

This custom application will be where the bulk of the software work is
performed. The logic will handle incoming packets from the serial I/O
drivers as well as requests from the user interface, and manage the
virtual elevator locations. More information concerning this software
component can be found in section 2.2.1.

o Visual Interface
The user interface will display each elevator along with the status of
the various panels and doors. The graphics will be displayed using
standard OpenGL along with an interface to give floor calls and
requests. More details are provided in section 2.2.3.

o Serial I/O Drivers
This custom driver will interact with the Application Logic and is
required to communicate over the serial line with the McGumps
Microprocessor Board. More information concerning the Central
Processing Station serial I/O software component can be found in
section 2.2.4.

• McGumps Microprocessor Board

This component functions as the controls for the three elevators. Consisting
of a MSP430F149 MCU chip and a MAX7128AE PLD, this control system will
communicate with the Central Processing Station via a Serial Line. It
will accept the elevator inputs from an attached PS/2 Keyboard and provide
simple graphical output from a directly attached Character LCD Display.

o Serial I/O Drivers
These drivers will take care of the communication between the
microprocessor board and the Central Processing Station via a serial
line. More details about the implementation can be found in section
2.2.5.

o Keyboard I/O Drivers
The MSP will have basic driver set that will interrupt the processor
whenever a key is pressed on the attached PS/2 keyboard, allowing
the microprocessor software to interpret the request and transmit a
packet to the Central system when needed. More information can be
found in section 2.2.5.

Figure 2: Implementation Diagram of the Elevator System

Central Processing Station
McGumps Microprocessor Board

Application
Logic

I/O Drivers

Monitor Keyboard and
Mouse

Serial

PS/2 Keyboard Character LCD
Display

Serial I/O
Drivers

SPI Direct Wire
USB DVI or VGA

Visual
Interface

Figure 1: Deployment Diagram for the Elevator System

2.2. System Operation

2.2.1. Central Processing Station: Application Logic

The application logic on the Central Processing
Station will behave according to Figure 3 (below). Upon
starting the application on the Central Processing Station,
the program logic will enter a stand-by state in which it
will wait for input from the Microprocessor board. Once it
receives data from the Microprocessor board (see section
2.2.4-5), the logic will processes the data and takes the
proper decisions, according to the developed algorithm to
manage the elevator system. For example, the
application might receive a signal from the
Microprocessor board emulating a user requesting an
elevator for a specific floor. Once the logic receives this
message, it will interpret it and dispatch an existing
elevator in the system to the requested floor according to
the elevator dispatching algorithm. It will then send the
processed decision to the Microprocessor board, therefore
committing the operation.

In terms of programming paradigms, the
application logic will function in its own thread, separate
from the Visual Interface thread (see section 2.2.3). In
order to ensure communication between the threads, the
application will use shared memory and Elevator objects,

which are described in section 2.2.3. Using the Boost
library for C++ applications, a new thread will be
spawned as soon as the application starts, and the
application will then enter the stand-by mode, waiting for
serial I/O, which is described in section 2.2.4.

Start

On Standby

Data
Received?

No

Process
Data(algorithms,
decision-making)

Yes

Send Processed
Results back to

MPS430

Figure 3: Central
Processing Station
Dataflow Diagram

2.2.2. Central Processing Station: Data processing, Decision Making and
operations of virtual elevators

Figure 4: UML Communication Sequence Diagram

2.2.3. Central Processing Station: OpenGL Graphical User Interface (GUI)

The Graphical User Interface (GUI) will visually represent what is happening in the
elevator simulation system. It will be the focus of an observer wanting to know the
current state of the system. The application itself will consist of a 1024x768 pixel
window with OpenGL graphics inside. Every time an event occurs in the program
logic (see below), the OpenGL GUI will display the appropriate graphics. The end
goal is a fully intuitive simulation environment.

Programming Implementation

In terms of programming paradigms, every elevator in the system is represented
by a C++ Elevator object. Many functions can be called on each Elevator object

present in the system (a default of 3 elevators are present). For example, every
frame (1/60th of a second), the method draw() is called on each Elevator object
present in the system.

Software Library Used

The freeglut library is used throughout the visual interface to display OpenGL
graphics. This library supports user input (mouse + key input) as well as
superimposed pop-up menus. This library is supported on the Windows, Linux and
Mac platforms and can be found on the web.1

Elevator Class Reference

Instance Variables

int floor : variable used to keep track of which floor the Elevator object is
standing at.

int numfloors : variable indicating how many floors are travelled in this
specific Elevator (default value in this implementation is 20).

bool *buttons : array of Boolean variables keeping track of the state of
buttons on the Elevator control panel.

float position: Floating point variable keeping track of the precise position of
the Elevator object.

bool jammed: Boolean variable keeping track of the Jammed/Not Jammed
state of this Elevator objects.

int direction: a variable indicating the current movement direction of the
elevator: up, down or idle

Class Functions

Program Logic Visual Interface (OpenGL)

moveToFloor(int): Function which will move the targeted Elevator object to
the floor specified by the integer parameter.

openDoor(), closeDoor(): Functions which will open or close the doors of the
targeted Elevator object.

1 http://freeglut.sourceforge.net/

http://freeglut.sourceforge.net/�

colorButton(int, bool): Function which will color the specified button on the
targeted Elevator’s control panel depending on the Boolean parameter
passed as second argument.

stopAndJam(): Function which will stop the targeted Elevator and assert the
variable used to indicate the jammed state of this Elevator.

Visual Interface (OpenGL) Program Logic

currentPosition(): Function which will return the floating-point current
position of the Elevator object for the program logic to use.

areDoorsClosed(): Function which will return a Boolean indicating whether
the doors are opened (true) or closed (false).

currentDirection(): Function which will return an integer indicating the
current direction of travel of the elevator

Doors Closed

int floor = x
bool jammed = false

int direction = 0

Travelling

int floor = x
bool jammed = false
Int direction = 1 or 2

Doors opened

int floor = x
bool jammed = false

int direction = 0

Initial State

Jammed

int floor = x
bool jammed = True

int direction = 0

Arrived desired floor

Command to travel to
a floor

Stop and Jam function
called

Elevator unjammed

Close Door button
pressed or after 2

seconds of inactivity

Figure 5: Elevator Class State Diagram

2.2.4. Central Processing Station: Serial I/O Drivers

The serial interface on the central processing station will be continuously monitored
to receive any status updates provided by the McGumps Microprocessor board. Any
button pressed from within an elevator will update the buttons boolean array of
that specific Elevator object in order to reflect a button pressed. Once a status
update is received, the elevator operations algorithm is run to re-compute the job
of each elevator. In order to update the tasks of the elevators, instructions are sent
back to the McGumps board over the serial line to refresh the jobs of each elevator.

In terms of programming paradigms, the application logic is going to monitor the
Linux /dev/ttyS0 device handle for possible data transmissions coming from the
serial line connected to the McGumps. Using the Boost serial I/O library for C++,
this process will run in a separate thread and handle asynchronous events without
disrupting the operations of the central processing block. Once such a change is
detected (handled by internal OS Interrupt), the serial driver is going to put the
received data in a special queue, which the main program logic is going to poll
continuously.

2.2.5. McGumps Microprocessor Board: I/O Drivers

Programming Implementation

The main loop of the system puts the processor to sleep until an input is sensed via
an interrupt on either the system’s serial bus, or via a keyboard input. When input
is sense, the system will process the request and forward it to the central system
over serial.

The system will also keep an FSM to keep track of which elevator and which floor
are currently being emulated, so the source address of the packets can be set
properly for the central system to process.

IO Reference

Functions

Visual Interface (OpenGL) Program Logic

keyboard_get_char(): Function which will return the a character read in from
the PS/2 keyboard.

serial_tx(packet*): Function which will return transmit the packet struct
given as an argument over the serial interface.

serial_rx(packet*): Function which will copy a packet from the packet queue
into the packet structure passed as an argument, or return false if no such
packet exists.

lcd_printf(char*, …): Function which will output characters onto the display.

Start

On StandbyNo

Send Emergency
Interrupt request

Send Interrupt
Stop/Go request

Send Value to
stack ordered
chonologically

Data to
Transmit?

Numerical

Emergency

Go/Stop

Go to Floor Go to closest
Floor and Stop

Restart Elevator Immediate Stop

Wait for processing Wait for processing
Wait for

processing

Figure 6: Microprocessor Board dataflow

3. Requirements Traceability Matrix

ID Functional Requirement Implementation
T1 There is one up/down signal

per floor. Whenever pressed,
the microcontroller responds by
sending an elevator to that
location with the intention of
going in the direction signaled.

Button low level drivers implemented in the
McGumps Microprocessor board (See Section
2.2.5). The event is handled in the central
processing station via a serial I/O driver (See
Section 2.2.4)

T2 Position feedback is sent by
every elevator such that the
control system is always aware
of all the elevator positions.

Since the elevator is actually virtual, its
position will be generated by a sub system of
the central processing station, responsible to
create, operate and maintain the virtual
elevators (See Section 2.2.2). The elevator
position feedback is also sent to the GUI which
displays it on the monitor (See section 2.2.3).
The communication is handled implicitly via a
global variable elevator Object accessible by
all systems.

T3 Any given elevator spans all
the floors of the building, such
that any floor is accessible from
all the others.

This is implemented at a low level in the Data
Processing unit (see Section 2.2.1) by means
of variable boundaries. It is also reflected in
the I/O drivers (See Section 2.2.5): there are
20 valid floor buttons which can be pressed by
the user), as well as in the GUI (See Section
2.2.3 the virtual building displayed is 20 floors
high)

T4 Each elevator is equipped with
a number button board; one
button representing one floor.

Implemented by the PS/2 keyboard connected
to the McGumps Microprocessor board (See
Section 2.2.5)

T5 Each elevator is equipped with
an EMERGENCY button.

Implemented by the PS/2 keyboard connected
to the McGumps Microprocessor board (See
Section 2.1: System Architecture for Hardware
and Section 2.2.5 for software drivers)

T6 Each elevator is equipped with
an OPEN and CLOSE door
buttons.

Implemented by the PS/2 keyboard connected
to the McGumps Microprocessor board (See
Section 2.1: System Architecture for Hardware
and Section 2.2.5 for software drivers)

T7 A certain priority of commands
will be maintained in the
system.

Implemented in the Data Processing and
decision making software component (See
Section 2.2.2)

T8 A 3D visual interface will serve
as visual support for the
Elevator System.

Implemented in the Graphical User Interface
component (see Section 2.2.3)

ID Error Detection Functional
Requirement

Implementation

T1 Very high speed recovery. Implemented in the Data Processing and
decision making software component (See
Section 2.2.2)

T2 Emergency Timeout Implemented in the Data Processing and
decision making software component (See
Section 2.2.2)

	1. Introduction
	2. Design Overview
	2.1. System Architecture
	2.2. System Operation
	2.2.1. Central Processing Station: Application Logic
	2.2.2. Central Processing Station: Data processing, Decision Making and operations of virtual elevators
	/
	2.2.3. Central Processing Station: OpenGL Graphical User Interface (GUI)
	2.2.4. Central Processing Station: Serial I/O Drivers
	2.2.5. McGumps Microprocessor Board: I/O Drivers

	3. Requirements Traceability Matrix

