

NAME	
ID#	

ECSE 330

INTRODUCTION TO ELECTRONICS

(Winter 2008)

Quiz 1 Set A

Monday January 28, 2008

Time Allowed: 45 Minutes

Total Marks: 20 Marks

Instructions:

- Answer all questions on the question sheets provided.
- Show all your work to receive full credits.
- Feel free to request additional blank paper if needed.

Question	Marks
Q1	/ 14
Q2	/6
Total	/ 20

Question 1)

- (a) Sketch the circuit model of a current amplifier, clearly label all components. (1 pt)
- (b) As shown below, the current amplifier in part (a) is connected between a current source I_s with a source resistance R_s and a load R_L .

Find an expression for the current gain of the amplifier (I_L/I_s). (4 pt)

- (c) Calculate the value of the current gain found in part (b) assuming that: $R_s=1M \Omega$, $R_L=100 \Omega$, $R_{in}=100 \Omega$, $R_o=1M \Omega$, and $A_{SI}=100$. (1 pt)
- (d) Modify the amplifier circuit of part (b) by adding a capacitor at the output of the current amplifier. Place the capacitor such that the overall transfer I_L/I_s function is LOWPASS. Draw the circuit of the modified amplifier. (2 pt)
- (e) Calculate the value of the capacitance in part (d) for a cutoff frequency of 100MHz. (4 pt)
- (f) Draw the bode <u>magnitude</u> and <u>phase</u> plots of (I_{out}/I_s) for the amplifier of section (d). (2 pt)

Question 2) In the following circuit all diodes are identical with $I_s=10^{-9}$ A and n=2. Use exponential model for diodes to find I (assume that the diodes operate in strong forward bias region). (6 pt)

DIODES:

$$i_{D} \downarrow \bigvee_{T} D_{1} \quad v_{D}$$

$$-$$

$$i_{D} = I_{S} \left(e^{\frac{v_{D}}{nV_{T}}} - 1 \right)$$