NAME	
ID\#	

ECSE 330

INTRODUCTION TO ELECTRONICS
 (Winter 2008)

Quiz 1 Set A

Monday January 28, 2008
Time Allowed: 45 Minutes
Total Marks: 20 Marks

Instructions:

- Answer all questions on the question sheets provided.
- Show all your work to receive full credits.
- Feel free to request additional blank paper if needed.

Question	Marks
Q1	$/ 14$
Q2	$/ 6$
Total	$/ 20$

Question 1)

(a) Sketch the circuit model of a current amplifier, clearly label all components. (1 pt)
(b) As shown below, the current amplifier in part (a) is connected between a current source I_{s} with a source resistance R_{S} and a load R_{L}.

Find an expression for the current gain of the amplifier $\left(\mathrm{I}_{\mathrm{L}} / \mathrm{I}_{\mathrm{s}}\right)$. (4 pt)
(c) Calculate the value of the current gain found in part (b) assuming that: $\mathrm{R}_{\mathrm{s}}=1 \mathrm{M} \Omega, \mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{R}_{\mathrm{in}}=100 \Omega, \mathrm{R}_{\mathrm{o}}=1 \mathrm{M} \Omega$, and $\mathrm{A}_{\mathrm{SI}}=100$. (1 pt)
(d) Modify the amplifier circuit of part (b) by adding a capacitor at the output of the current amplifier. Place the capacitor such that the overall transfer I_{L} / I_{S} function is LOWPASS. Draw the circuit of the modified amplifier. (2 pt)
(e) Calculate the value of the capacitance in part (d) for a cutoff frequency of 100 MHz . (4 pt)
(f) Draw the bode magnitude and phase plots of $\left(\mathrm{I}_{\text {out }} / \mathrm{I}_{\mathrm{s}}\right)$ for the amplifier of section (d). (2 pt)

Question 2) In the following circuit all diodes are identical with $\mathrm{I}_{\mathrm{s}}=10^{-9} \mathrm{~A}$ and $\mathrm{n}=2$. Use exponential model for diodes to find I (assume that the diodes operate in strong forward bias region). (6 pt)

DIODES:

$$
\begin{gathered}
\mathrm{i}_{\mathrm{D}} \downarrow \mathrm{D}_{1} \\
\mathrm{i}_{\mathrm{D}} \\
\mathrm{v}_{\mathrm{D}}=I_{S}\left(e^{\frac{v_{D}}{n V_{T}}}-1\right)
\end{gathered}
$$

