Midterm Examination # 2

Electronic Circuits I - ECSE-330B March 25th 2008, 8:35 AM – 9:55 AM Professor Ramesh Abhari

Pertinent Information:

- 1) This is a closed-book examination, no notes permitted.
- 2) This examination consists of 4 questions with total possible points of 50. Partial point distribution is indicated in brackets.
- 3) Only the Faculty Standard Calculator is permitted.
- 4) <u>Show your work:</u> answers without justification will not receive marks. State any assumption you find necessary to complete your answer.

Last Name	
First Name	
Student Number	

Question	Mark
1	/19
2	/8
3	/15
4	/8
Total	/50

QUESTION 1 (19 marks)

Consider the following circuit. Assume $V_{DD} = 5 \text{ V}$, $R_D = 4 \text{ K}\Omega$, $R_S = 3 \text{ K}\Omega$, $\mu_n C_{OX} = 100 \mu A/V^2$, $V_{tn} = 1 \text{ V}$, $\chi = 0.25 \text{ V}^{-1}$ and $(W/L)_1 = 20$.

For DC analysis you may ignore CLM and body effect.

a) From the DC analysis find $V_{out}(DC)$, $V_S(DC)$, and I_D . (3 marks)

This circuit is now used as an amplifier. Consider $R_{sig}=50\Omega$. The capacitor is ideal AC short circuit. Consider body effect but ignore CLM for AC analysis.

b) Specify the type of the amplifier? (i.e. CS, CG, or CD) (1 mark)

- c) Draw the small-signal equivalent circuit of the amplifier. (3 marks)
- d) Calculate g_m and g_{mb} . (If you haven't solved (a) assume $I_D=2$ mA). (2 marks)
- e) Derive an expression for the small-signal gain V_{out}/V_{in} and calculate its value. (4 marks)
- f) Derive an expression for R_{in} and calculate its value. (3 marks)
- g) Derive an expression for the small-signal gain V_{out}/V_{sig} and calculate its value. (3 marks)

QUESTION 2 (8 marks)

In the digital logic circuit shown above determine the output voltage (V_{out}) for the following input combinations:

- a) $V_A=0V$, $V_B=0V$, and $V_C=0V$ (4 marks)
- b) $V_A=0V$, $V_B=5V$, and $V_C=0V$ (4 marks)

For each part clearly indicate the state of all transistors and explain why. Consider the magnitude of the threshold voltage for all transistors is 1.

QUESTION 3 (15 marks)

In the following amplifier ignore body effect and CLM.

- a) Draw the high frequency small-signal equivalent circuit of the amplifier. The current source is assumed to be ideal. (3 marks)
- b) Derive an expression for the mid-band gain. (3 marks)
- c) Find the frequency of the pole associated with $C_{S.}$ (3 marks)
- d) Find the frequency of the pole associated with C_{C} . (3 marks)
- e) Find the f_H (high frequency 3-dB corner frequency) assuming that the effect of C_{gd} at the input (gate) of M_1 is a capacitor to ground with a value equal to $C_{eq}=C_{gd}(1+g_mR_D)$. (3 marks)

QUESTION 4 (8 marks)

- Specify the state of the BE and BC junctions in the active mode.
- Explain the physics of the BJT operation in the active mode.

