Midterm Examination \# 2

Electronic Circuits I - ECSE-330B
March $25^{\text {th }} 2008$, 8:35 AM - 9:55 AM
Professor Ramesh Abhari

Pertinent Information:

1) This is a closed-book examination, no notes permitted.
2) This examination consists of 4 questions with total possible points of 50 . Partial point distribution is indicated in brackets.
3) Only the Faculty Standard Calculator is permitted.
4) Show your work: answers without justification will not receive marks. State any assumption you find necessary to complete your answer.

Last Name	
First Name	
Student Number	

Question	Mark
1	$/ 19$
2	$/ 8$
3	$/ 15$
4	$/ 8$
Total	$/ 50$

QUESTION 1 (19 marks)
Consider the following circuit. Assume $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{D}}=4 \mathrm{~K} \Omega, \mathrm{R}_{\mathrm{S}}=3 \mathrm{~K} \Omega, \mu_{\mathrm{n}} \mathrm{C}_{\mathrm{OX}}=100$ $\mu \mathrm{A} / \mathrm{V}^{2}, \mathrm{~V}_{\mathrm{tn}}=1 \mathrm{~V}, \chi=0.2, \lambda=0.025 \mathrm{~V}^{-1}$ and $(\mathrm{W} / \mathrm{L})_{1}=20$.

For DC analysis you may ignore CLM and body effect.

a) From the DC analysis find $\mathrm{V}_{\text {out }}(\mathrm{DC}), \mathrm{V}_{\mathrm{S}}(\mathrm{DC})$, and I_{D}. (3 marks)

This circuit is now used as an amplifier. Consider $\mathrm{R}_{\text {sig }}=50 \Omega$. The capacitor is ideal AC short circuit. Consider body effect but ignore CLM for AC analysis.

b) Specify the type of the amplifier? (i.e. CS, CG, or CD) (1 mark)
c) Draw the small-signal equivalent circuit of the amplifier. (3 marks)
d) Calculate g_{m} and $g_{m b}$. (If you haven't solved (a) assume $\mathrm{I}_{\mathrm{D}}=2 \mathrm{~mA}$). (2 marks)
e) Derive an expression for the small-signal gain $\mathrm{V}_{\text {out }} / \mathrm{V}_{\text {in }}$ and calculate its value. (4 marks)
f) Derive an expression for $\mathrm{R}_{\text {in }}$ and calculate its value. (3 marks)
g) Derive an expression for the small-signal gain $\mathrm{V}_{\text {out }} / \mathrm{V}_{\text {sig }}$ and calculate its value. (3 marks)

QUESTION 2 (8 marks)

In the digital logic circuit shown above determine the output voltage $\left(\mathrm{V}_{\text {out }}\right)$ for the following input combinations:
a) $\mathrm{V}_{\mathrm{A}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{B}}=0 \mathrm{~V}$, and $\mathrm{V}_{\mathrm{C}}=0 \mathrm{~V}$ (4 marks)
b) $\mathrm{V}_{\mathrm{A}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{B}}=5 \mathrm{~V}$, and $\mathrm{V}_{\mathrm{C}}=0 \mathrm{~V}$ (4 marks)

For each part clearly indicate the state of all transistors and explain why. Consider the magnitude of the threshold voltage for all transistors is 1.

In the following amplifier ignore body effect and CLM.

a) Draw the high frequency small-signal equivalent circuit of the amplifier. The current source is assumed to be ideal. (3 marks)
b) Derive an expression for the mid-band gain. (3 marks)
c) Find the frequency of the pole associated with C_{s}. (3 marks)
d) Find the frequency of the pole associated with C_{C}. (3 marks)
e) Find the f_{H} (high frequency $3-\mathrm{dB}$ corner frequency) assuming that the effect of C_{gd} at the input (gate) of M_{1} is a capacitor to ground with a value equal to $\mathrm{C}_{\mathrm{eq}}=\mathrm{C}_{\mathrm{gd}}\left(1+\mathrm{g}_{\mathrm{m}} \mathrm{R}_{\mathrm{D}}\right.$). (3 marks)

QUESTION 4 (8 marks)

- Specify the state of the BE and BC junctions in the active mode.
- Explain the physics of the BJT operation in the active mode.

