Midterm Examination # 2

Electronic Circuits I - ECSE-330B March 27th 2007, 8:35 AM – 9:55 AM Professor Ramesh Abhari

Pertinent Information:

- 1) This is a closed-book examination, no notes permitted.
- 2) This examination consists of 4 questions with total possible points of 50. Partial point distribution is indicated in brackets.
- 3) Only the Faculty Standard Calculator is permitted.
- 4) <u>Show your work:</u> answers without justification will not receive marks. State any assumption you find necessary to complete your answer.

Last Name	
First Name	
Student Number	

Question	Mark
1	/8
2	/22
3	/9
4	/11
Total	/50

QUESTION 1 (8 marks)

In the following circuit:

 $V_{DD} = 5V$, $R2 = 10K\Omega$, $R3 = 4K\Omega$, $\mu_n C_{OX} = \mu_p C_{OX} = 100 \ \mu A/V^2$, $|V_t| = V_{tn} = -V_{tp} = 1 V$, $(W/L)_1 = (W/L)_3 = (W/L)_4 = 20$, $(W/L)_5 = (W/L)_6 = 40$. The channel length modulation and body effect can be ignored. Assume that all transistors are in saturation mode.

- a) Find V_{ref} such that I_{ref} =250 μ A. (2 marks)
- b) Find R1. (0.5 mark)
- c) Find $(W/L)_2$ such that $I_{D2}=1$ mA. (2 marks)
- d) Find $I_{D4.}$ (0.5 mark)
- e) Find $(W/L)_7$ if V_{D7} is to be 1V. (3 marks)

QUESTION 2 (22 marks)

Consider the two-stage amplifier in Fig.2. Assume $V_{DD} = 5 \text{ V}$, $R_G = 4 \text{ K}\Omega$, $R_D = 4 \text{ K}\Omega$, $\mu_n C_{OX} = \mu_p C_{OX} = 100 \ \mu\text{A/V}^2$, $V_{tn} = 1 \text{ V}$, $\chi=0.2$, $\lambda = 0.025 \text{ V}^{-1}$ and $(W/L)_1 = (W/L)_2 = 40$. Also assume that $I_s=500 \ \mu\text{A}$ and that for the small-signal analysis the current sources can be replaced by 100 K Ω resistors. The capacitors are ideal AC short circuits.

For <u>DC analysis</u> you may <u>ignore CLM and body effect</u>. <u>Consider body effect and</u> <u>CLM for AC analysis</u>.

- a) Specify the type of the amplifiers in each stage? (i.e. CS, CG, or CD) (1 mark)
- b) Assume that all transistors are in saturation. From the DC analysis find V_{S1} , V_1 and V_{out} . (6 marks)
- c) Draw the small-signal equivalent circuit of the entire amplifier. (4 marks)
- d) Calculate g_{m1} , r_{o1} , g_{m2} , and r_{o2} . (2 marks)
- e) Find R_{in1} and R_{in2} . (1 mark)
- f) Derive expressions for the small-signal gains V_1/V_{in} and V_{out}/V_{in} and calculate their values. (6 marks)
- g) Calculate the output resistance (R_{out}) of the above amplifier. (2 marks)

QUESTION 3 (9 marks)

In the following amplifier ignore body effect but consider CLM.

- a) Draw the high frequency small-signal equivalent circuit of the amplifier. (3marks)
- b) Derive an expression for the mid-band gain. (2 marks)
- c) Find the frequency of the pole associated with $C_{S.}$ (2 marks)
- d) Find the frequency of the pole associated with C_{C} . (2 marks)

QUESTION 4 (11 marks)

Part I)

- Draw a table naming the different modes of operation of an npn BJT. Specify the state of the BE and BC junctions for each mode. (4 marks)
- Which mode is used in designing amplifiers? Explain the physics of the BJT operation at this mode. (3 marks)

Part II)

In the following BJT circuit V_{CC}=5 V, R_B=200 K Ω , R_E=2.3 K Ω , R_C=1 K Ω , β =100, and V_{BE}(on)=0.7 V.

- a) Find the DC values of I_B and V_C . (3 marks)
- b) Verify the mode of operation of Q_1 . (1 mark)