Midterm Examination \# 2

Electronic Circuits I - ECSE-330B
March 31st 2005, 8:35 AM - 9:55 AM
Professor Ramesh Abhari

Pertinent Information:

1) This is a closed-book examination, no notes permitted.
2) This examination consists of 4 questions with total possible points of 32. Partial point distribution is indicated in brackets.
3) Only the Faculty Standard Calculator is permitted.
4) Show your work: answers without justification will not receive marks. State any assumption you find necessary to complete your answer.

Last Name	
First Name	
Student Number	

Question	Mark
1	17
2	$/ 8$
3	$/ 9$
4	$/ 8$
Total	$/ 32$

Question \#1 (8 Points)

In the following circuit:
$\mathrm{k}_{\mathrm{p}}=\mathrm{k}_{\mathrm{n}}$,
$\mathrm{V}_{\mathrm{t} 0 \mathrm{n}}=\left|\mathrm{V}_{\mathrm{top}}\right|$,
$\left(\frac{W}{L}\right)_{2}=2\left(\frac{W}{L}\right)_{1}$,
$\left(\frac{W}{L}\right)_{4}=\left(\frac{W}{L}\right)_{5}=\left(\frac{W}{L}\right)_{6}=\left(\frac{W}{L}\right)_{7}=\left(\frac{W}{L}\right)_{8}=\left(\frac{W}{L}\right)_{1}$,
Channel length modulation can be ignored $(\lambda=0)$. (Assume that all the transistors are operating in the saturation mode)

(a) Calculate $\mathrm{I}_{2}, \mathrm{I}_{9}$, and I_{10} in terms of $\mathrm{I}_{\text {ref }}$. (5 pts)
(b) Find I_{3} and determine $\left(\frac{W}{L}\right)_{3}$ in terms of $\left(\frac{W}{L}\right)_{1} \cdot(2 \mathrm{pts})$

Question \#2 (8 Points)

In the following amplifier ignore the body effect and the channel length modulation. $\mathrm{V}_{\mathrm{GG} 1}$ and $\mathrm{V}_{\mathrm{GG} 2}$ are the DC voltage supplies used for biasing the gates of M_{1} and M_{2}.

(a) Draw the small signal equivalent circuit. (2 pts)
(b) Derive an expression for the small signal equivalent resistance (R_{eq}) when looking into the source of M_{2} (as shown above). (3 pts)
(c) Derive an expression for the small signal voltage gain $A_{v}=\frac{V_{\text {out }}}{V_{\text {in }}}$. (3 pts)

Question \#3 (9 Points)

In the following circuit:
$\beta_{1}=\beta_{2}=100, \mathrm{~V}_{\mathrm{CC}}=10^{\mathrm{V}}, \mathrm{C}$ is very large, $\mathrm{R}_{\mathrm{b} 1}=70 \mathrm{~K} \Omega, \mathrm{R}_{\mathrm{b} 2}=30 \mathrm{~K} \Omega, \mathrm{R}_{\mathrm{e} 1}=2 \mathrm{~K} \Omega$, $\mathrm{R}_{\mathrm{c} 1}=4 \mathrm{~K} \Omega, \mathrm{R}_{\mathrm{c} 2}=4 \mathrm{~K} \Omega$, and $\mathrm{R}_{\mathrm{e} 2}=3 \mathrm{~K} \Omega$.
The Early effect can be ignored for all transistors.

(a) Calculate $\mathrm{I}_{\mathrm{C} 1}, \mathrm{I}_{\mathrm{C} 2}, \mathrm{~V}_{\mathrm{b} 1}$, and $\mathrm{V}_{\mathrm{b} 2}$ and verify the assumed mode of operation for the transistors. (8 pts)
(b) Determine the maximum value for $\mathrm{R}_{\mathrm{c} 2}$ so that Q_{2} operates in the active mode. (1 pt)

Question \#4 (8 Points)

In the following amplifier the Early effect can be neglected.

(a) Draw the small signal equivalent circuit. (2 pts)
(b) Derive an expression for the small signal voltage gain A_{v}. (2 pts)
(c) Derive an expression for the small signal current gain $A_{I S}$. (2 pts)
(d) Derive expressions for $\mathrm{R}_{\text {in }}$ and $\mathrm{R}_{\text {out }}$. (2 pts)

