Midterm Examination # 2

Electronic Circuits I - ECSE-330B March 31st 2005, 8:35 AM – 9:55 AM Professor Ramesh Abhari

Pertinent Information:

- 1) This is a closed-book examination, no notes permitted.
- 2) This examination consists of 4 questions with total possible points of 32. Partial point distribution is indicated in brackets.
- 3) Only the Faculty Standard Calculator is permitted.
- 4) <u>Show your work:</u> answers without justification will not receive marks. State any assumption you find necessary to complete your answer.

Last Name	
First Name	
Student Number	

Question	Mark
1	/7
2	/8
3	/9
4	/8
Total	/32

Question #1 (8 Points)

In the following circuit: $k_p = k_n$, $V_{t0n} = |V_{t0p}|$, $\left(\frac{W}{L}\right)_2 = 2\left(\frac{W}{L}\right)_1$, $\left(\frac{W}{L}\right)_4 = \left(\frac{W}{L}\right)_5 = \left(\frac{W}{L}\right)_6 = \left(\frac{W}{L}\right)_7 = \left(\frac{W}{L}\right)_8 = \left(\frac{W}{L}\right)_1$,

Channel length modulation can be ignored $(\lambda = 0)$. (Assume that all the transistors are operating in the saturation mode)

(a) Calculate I_2 , I_9 , and I_{10} in terms of I_{ref} . (5 pts)

(b) Find I₃ and determine $\left(\frac{W}{L}\right)_3$ in terms of $\left(\frac{W}{L}\right)_1$. (2 pts)

Question #2 (8 Points)

In the following amplifier ignore the body effect and the channel length modulation. V_{GG1} and V_{GG2} are the DC voltage supplies used for biasing the gates of M_1 and M_2 .

- (a) Draw the small signal equivalent circuit. (2 pts)
- (b) Derive an expression for the small signal equivalent resistance (R_{eq}) when looking into the source of M_2 (as shown above). (3 pts)
- (c) Derive an expression for the small signal voltage gain $A_v = \frac{V_{out}}{V_{in}}$. (3 pts)

Question #3 (9 Points)

In the following circuit:

 $\beta_1 = \beta_2 = 100$, $V_{CC}=10^V$, C is very large, $R_{b1}=70K \Omega$, $R_{b2}=30K \Omega$, $R_{e1}=2K \Omega$, $R_{c1}=4K\Omega$, $R_{c2}=4K\Omega$, and $R_{e2}=3K\Omega$.

The Early effect can be ignored for all transistors.

- (a) Calculate I_{C1}, I_{C2}, V_{b1}, and V_{b2} and verify the assumed mode of operation for the transistors. (8 pts)
- (b) Determine the maximum value for R_{c2} so that Q_2 operates in the active mode. (1 pt)

Question #4 (8 Points)

In the following amplifier the Early effect can be neglected.

- (a) Draw the small signal equivalent circuit. (2 pts)
- (**b**) Derive an expression for the small signal voltage gain A_{ν} . (2 pts)
- (c) Derive an expression for the small signal current gain A_{IS} . (2 pts)
- (d) Derive expressions for R_{in} and R_{out} . (2 pts)