Midterm Examination \# 2
 Electronic Circuits I - ECSE-330B
 March $25^{\text {th }}$ 2004, 8:35 AM - 9:55 AM
 Professor Ramesh Abhari

Pertinent Information:

1) This is a closed-book examination, no notes permitted.
2) Answers should be written in pen.
3) This examination consists of 4 questions with total possible points of 36 .

Partial point distribution is indicated in brackets.
4) Only the Faculty Standard Calculator is permitted.
5) Show your work: answers without justification will not receive marks. State any assumption you find necessary to complete your answer.

Last Name	
First Name	
Student Number	

Question	Mark
1	$/ 7$
2	$/ 10$
3	$/ 7$
4	$/ 12$
Total	$/ 36$

Question \#1 (7 pts)

In the following circuit, in all transistors $\mathrm{V}_{\mathrm{tn}}=-\mathrm{V}_{\mathrm{tp}}=1 \mathrm{~V}$.
$\mathrm{k}_{\mathrm{p}}{ }^{\prime} \mathrm{W}_{2} / \mathrm{L}_{2}=\mathrm{k}_{\mathrm{n}}{ }^{\prime} \mathrm{W}_{1} / / \mathrm{L}_{1}=200 \mu \mathrm{~A} / \mathrm{V}^{2}$, and $\mathrm{W}_{3} / \mathrm{L}_{3}=\mathrm{W}_{4} / \mathrm{L}_{4}=10 \mathrm{~W}_{2} / \mathrm{L}_{2} . \mathrm{k}_{\mathrm{p}}{ }^{\prime}$ is the same in all PMOS transistors.
Vcc $=5 \mathrm{~V}$ and Vref $=\operatorname{Vout}(\mathrm{DC})=3 \mathrm{~V}$.

a) Ignore the channel length-modulation and find Iref, Rref, and $\mathrm{I}_{\mathrm{D} 1}$? (3 pts)
b) Assume $|\lambda|=0.05 \mathrm{~V}^{-1}$ for all of the transistors. Replace the current mirror with an appropriate output resistance and draw the small-signal model for the amplifier circuit. Be sure to calculate the small-signal parameters. (3 pts)
c) Calculate the gain $\mathrm{v}_{\text {out }} / \mathrm{v}_{\mathrm{s} .} \cdot(1 \mathrm{pts})$
current source ideal.

a) Find the Req as indicated in the above diagram. (2 pts)
b) Replace M2 with the equivalent resistance found in part (a). Draw the small signal model for this circuit and include the Body Effect for M1 in your model. (3 pts)
c) Based on the model found in part (b), find an expression for the voltage gain $\left(\mathrm{V}_{\text {out }} / \mathrm{V}_{\text {in }}\right)$. $(5 \mathrm{pts})$

Question \#3 (7 Points)

Consider the following circuit. Both NPN and PNP transistors have $\beta=100$ and $V_{B E}=V_{E B}=0.7 \mathrm{~V}$.

$$
\mathrm{R}_{\mathrm{B} 2}=200 \mathrm{~K} \Omega, \mathrm{R}_{\mathrm{B} 1}=100 \mathrm{~K} \Omega, \mathrm{R}_{\mathrm{C} 1}=10 \mathrm{~K} \Omega, \mathrm{R}_{\mathrm{E} 1}=10 \mathrm{~K} \Omega \text { and } \mathrm{R}_{\mathrm{E} 2}=1 \mathrm{~K} \Omega .
$$

a) Assume the active mode operation for both transistors. If $\mathrm{R}_{\mathrm{C} 2}$ is $1 \mathrm{~K} \Omega$, find $\mathrm{VB} 1, \mathrm{VC} 1$, VE2 and VC2. (6 pts)
b) If $\mathrm{V}_{\mathrm{ECsat}}=0.3 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{EB}}=0.7 \mathrm{~V}$, what is the maximum value for $\mathrm{R}_{\mathrm{C} 2}$ in order to keep Q2 operating in the active mode. (1 pt)

Question \#4 (12 Points)

Consider the following common-emitter amplifier circuit. The signal source has a resistance of $10 \mathrm{k} \Omega$ as shown in the figure, and a $1 \mathrm{k} \Omega$ load R_{L} is attached at the output. Capacitors are infinite-valued, and
transistor $\beta=100$.

Figure
a) Solve for the DC value of the emitter current I_{E} and the collector voltage V_{C}. $(3 \mathrm{pts})$
b) Draw the small-signal model and find an expression for the input resistance $\mathrm{R}_{\text {in }}$ seen by the signal source and calculate it based on your answers from part (a). Ignore the Early Effect. (4 pts)
c) Find an expression for the overall voltage gain $\mathrm{A}_{\mathrm{V}}=\mathrm{v}_{\text {out }} / \mathrm{v}_{\mathrm{s}}$ and calculate it using answers from parts (a) and (b). (2 pts)
d) Consider what happens if the negative power supply has a voltage ripple noise which is not uncommon. You may treat such a ripple as a small-signal source v_{ee} at the negative power supply. This signal has no source resistance. Find an expression for the voltage gain $v_{\text {out }} / \mathrm{v}_{\text {ee }}$ (do not calculate it). Ignore the Early Effect. (3 pts)

