#### Page 1 of 5

# **Midterm Examination #2**

Electronic Circuits I - ECSE-330B March 25<sup>th</sup> 2004, 8:35 AM – 9:55 AM Professor Ramesh Abhari

## **Pertinent Information:**

- 1) This is a closed-book examination, no notes permitted.
- 2) Answers should be written in pen.
- 3) This examination consists of 4 questions with total possible points of 36. Partial point distribution is indicated in brackets.
- 4) Only the Faculty Standard Calculator is permitted.
- 5) <u>Show your work:</u> answers without justification will not receive marks. State any assumption you find necessary to complete your answer.

| Last Name      |  |
|----------------|--|
| First Name     |  |
| Student Number |  |

| Question | Mark |
|----------|------|
| 1        | /7   |
| 2        | /10  |
| 3        | /7   |
| 4        | /12  |
| Total    | /36  |

## Question #1 (7 pts)

In the following circuit, in all transistors  $V_{tn} = -V_{tp} = 1V$ .

 $k_p'W_2/L_2 = k_n'W_1//L_1 = 200\mu A/V^2$ , and  $W_3/L_3 = W_4/L_4 = 10W_2/L_2$ .  $k_p'$  is the same in all PMOS transistors.

Vcc = 5 V and Vref = Vout (DC) = 3V.



- a) Ignore the channel length-modulation and find Iref, Rref, and  $I_{D1}$ ? (3 pts)
- b) Assume  $|\lambda| = 0.05 V^{-1}$  for all of the transistors. Replace the current mirror with an appropriate output resistance and draw the small-signal model for the amplifier circuit. Be sure to calculate the small-signal parameters. (3 pts)
- c) Calculate the gain  $v_{out}/v_{s.}$ . (1 pts)

## Question #2 (10 Points)

In the following circuit, neglect the channel length modulation for both M1 and M2 and consider the DC

current source ideal.



- a) Find the Req as indicated in the above diagram. (2 pts)
- b) Replace M2 with the equivalent resistance found in part (a). Draw the small signal model for this circuit and include the Body Effect for M1 in your model. (3 pts)
- c) Based on the model found in part (b), find an expression for the voltage gain  $(V_{out}/V_{in})$ . (5 pts)

#### Question #3 (7 Points)

Consider the following circuit. Both NPN and PNP transistors have  $\beta = 100$  and  $V_{BE} = V_{EB} = 0.7V$ .

 $R_{B2}$  = 200 KΩ,  $R_{B1}$  = 100 KΩ,  $R_{C1}$  = 10 KΩ,  $R_{E1}$  = 10 KΩ and  $R_{E2}$  = 1 KΩ.



a) Assume the active mode operation for both transistors. If R<sub>C2</sub> is 1 KΩ, find VB1, VC1, VE2 and VC2. (6 pts)

b) If  $V_{ECsat} = 0.3V$  and  $V_{EB} = 0.7 V$ , what is the maximum value for  $R_{C2}$  in order to keep Q2 operating in the active mode. (1 pt)

### Question #4 (12 Points)

Consider the following common-emitter amplifier circuit. The signal source has a resistance of  $10k\Omega$  as shown in the figure, and a  $1k\Omega$  load  $R_L$  is attached at the output. Capacitors are infinite-valued, and

transistor  $\beta$ =100.



- a) Solve for the DC value of the emitter current  $I_E$  and the collector voltage  $V_C$ . (3 pts)
- b) Draw the small-signal model and find an expression for the input resistance R<sub>in</sub> seen by the signal source and calculate it based on your answers from part (a). Ignore the Early Effect. (4 pts)
- c) Find an expression for the overall voltage gain  $A_V = v_{out}/v_s$  and calculate it using answers from parts (a) and (b). (2 pts)
- d) Consider what happens if the negative power supply has a voltage ripple noise which is not uncommon. You may treat such a ripple as a small-signal source v<sub>ee</sub> at the negative power supply. This signal has no source resistance. Find an expression for the voltage gain v<sub>out</sub>/v<sub>ee</sub> (do not calculate it). Ignore the Early Effect. (3 pts)