SOLUTIONS

Midterm Examination II
304-330A
November $15^{\text {th }} 2001$

Question 1

Using KVL:

$$
\begin{aligned}
-1.67 & -I_{B}(13.3 \mathrm{~K}) \underbrace{00.7}_{V_{B E}=0.7}-\underbrace{100 I_{B}}_{I_{E}=(B+1) I_{B}} R_{E 1}=-5 \\
\Rightarrow & I_{B}=0.01 \mathrm{~mA} \\
& I_{E}=1 \mathrm{~mA} \\
& V_{C}=5-R_{C} I_{C}=5.0 .99 \quad 4.01 \mathrm{~V}
\end{aligned}
$$

b) $R_{\text {in }}\left(R_{B 1}\left\|R_{B 2}\right\|(B+1)\left[r_{e}+R_{E} \| R_{E 2}\right]\right.$

$$
=11.29 \mathrm{k} \Omega
$$

c) $R_{\text {our }}=R_{c}=1 k \Omega$
d)

$$
\begin{aligned}
\frac{V_{\text {out }}}{V_{S}} & =R_{\text {in }} \times \frac{-\alpha R_{C} \| R_{L}}{R_{\text {in }}+R_{S}} \\
& =-0.1645 \mathrm{~V} / \mathrm{V}
\end{aligned}
$$

e) Condition required

$$
\begin{aligned}
& \left|v_{\text {be }}\right|<10 \mathrm{mV} \\
& \begin{aligned}
\frac{v_{\text {be }}}{v_{s}}= & \frac{R_{\text {in }}}{R_{\text {IN }}+R_{s}} \times \frac{r_{c}}{r_{e}+R_{E 1}| | R_{E 2}} \\
= & 6.232 \mathrm{mV} / \mathrm{V}
\end{aligned} \\
& v_{\text {be }}<10 \mathrm{mv} \Longrightarrow\left|v_{s}\right|<1.6 \mathrm{~V}
\end{aligned}
$$

$$
\frac{2}{(b)} R_{03}=r_{03} / /\left(\frac{r_{04}}{\beta+1}+r_{e 3}\right)
$$

$$
\frac{3}{(c)} \frac{v_{0}}{v_{b 3}}=\frac{\left(R_{L} / / r_{03}\right)}{\left(R_{L} / / r_{03}\right)+r_{e 3}}
$$

$$
{ }^{4} \Rightarrow R_{i n 2}=(\beta+1)\left(r_{e 2}+R_{E 2}\right)
$$

(a)

$$
v_{b 3}=g_{m 2} v_{i b}\left(r_{04} / / R_{i 3}\right)
$$

where $v_{e b}=-\frac{r_{e 2}}{r_{e 2}+R_{E 2}} v_{b 2}$ of $R_{i 3}=$

$$
\Rightarrow \frac{v_{b 3}}{v_{b 2}}=\ell_{m 2}^{+\operatorname{sign}} \frac{r_{e 2}}{r_{e 2}+R_{E 2}}\left(r_{04} / / R_{i 3}\right)
$$

(e)
where $r_{e 2}=\frac{\alpha_{2}}{g_{m 2}} \Rightarrow g_{m 2}=\frac{\alpha_{2}}{r_{e 2}}$

$$
\sim \quad=\frac{\alpha}{r_{e 2}+R_{E 2}}\left(r_{04} / / R_{i 3}\right)=-\frac{\beta}{R_{i n 2}}\left(r_{04} / / R_{i 3}\right)
$$

$$
\begin{gathered}
v_{b 2}=-g_{m} v_{b e}\left(R_{c 1} / / R_{\text {in } 2}\right) \\
\text { where } v_{b e}=\Theta v_{c 1} \\
\Rightarrow \frac{v_{b 2}}{v_{e 1}}=g_{m}\left(R_{c 1} / / R_{i n 2}\right)=\frac{\alpha}{r_{e l}}\left(R_{c 1} / / R_{i n 2}\right)
\end{gathered}
$$

(f)

$$
\Rightarrow R_{i l}=r_{e_{1}} / / R_{E_{1}}
$$

(i) $\frac{v_{e l}}{v_{s}}=\frac{R_{i 1}}{R_{i 1}+R_{s}}$

$$
\text { (h) } \rightarrow R_{01}=R_{c 1}
$$

\#3 a)
(1) $V_{S}-\frac{5 V_{D}}{250}$
(2) Assume saturation

$$
\begin{aligned}
& \frac{1}{2} k_{n}\left(\frac{w}{L}\right)\left(v_{G S} v_{t}\right)^{2}\left(1+\lambda v_{D s}\right) \\
& 50 \mu(20)\left(v_{G}-v_{s} 1\right)^{2}=v_{s} \\
& \frac{v_{G}^{2}}{250}=4 \\
& \Rightarrow V_{G}= \pm 4 \quad V_{G}=2 \pm 2 \\
& V_{G}=0 \quad V_{G}=4
\end{aligned}
$$

(3) Need

$$
\begin{aligned}
& V_{a} v \geqslant V_{t} \\
& V_{a}-\geqslant \\
& V_{a} \geqslant 2 \Rightarrow V_{a}=4
\end{aligned}
$$

(4) $D \frac{V_{S}}{250} \quad 250 \Rightarrow I_{D}=4 \mathrm{~mA}$
(5) $V_{D} 5-4 m A 250 \Omega \Rightarrow V_{D}=4 \mathrm{~V}$
(c) Verify saturateon

$$
V_{D} \geqslant V_{G} \quad v_{t}
$$

$4 \geqslant 4 \quad$ cyes \Rightarrow saturation' $0 k$
3.b.)
(1) $V_{s}=250.2 \mathrm{~mA}=0.5 \mathrm{~V}$
(2) For saturaty or triode, need

$$
\begin{aligned}
-v_{s} & \geqslant v_{t} \\
s-0.5 & \geqslant 1
\end{aligned}
$$

(3) Saturation $\Rightarrow V_{D} \geqslant V_{G}-V_{t}$

Triode $\Rightarrow V_{D} \leqslant V_{G}-V_{t}$
Edge $\Rightarrow \quad V_{D}=V_{G}-V_{t}$

$$
=3-1
$$

$$
\Rightarrow \quad v_{D}=2 \mathrm{~V}
$$

(4) $R_{D}=$?.

$$
R_{D}=\frac{5 V-2 V}{2 m A} \Rightarrow R_{D}=1.5 \mathrm{kr}
$$

