Midterm Examination \# 1

Electronic Circuits I - ECSE-330B
February $17^{\text {th }} 2004,8: 35$ AM - 9:55 AM
Professor Ramesh Abhari

Pertinent Information:

1) This is a closed-book examination, no notes permitted.
2) Answers should be written in pen.
3) This examination consists of 4 questions with total possible points of 36 .

Partial point distribution is indicated in brackets.
4) Only the Faculty Standard Calculator is permitted.
5) Show your work: answers without justification will not receive marks. State any assumption you find necessary to complete your answer.

Last Name	
First Name	
Student Number	

Question	Mark
1	$/ 9$
2	$/ 9$
3	$/ 9$
4	$/ 9$
Total	$/ 36$

Question \#1 (9 pts)

In the circuit shown below, $\mathrm{D} 1, \mathrm{D} 2, \mathrm{D} 3$ and D 4 are identical and are represented by constant voltage drop model (CVDM) $\mathrm{V}_{\mathrm{D} 0}=0.7$ Volt. Z is a Zener diode with the specified Zener voltage of 8 V at 10 mA and $r_{z}=20 \Omega$ and can be represented by a piecewise-linear model.
a) Find $\mathrm{V}_{\mathrm{Z} 0}$ in the piecewise-linear model for the Zener diode. (2 pts)
b) Sketch and clearly label the voltage transfer characteristic (VTC) of this circuit for $-20 \mathrm{~V}<\mathrm{v}_{\mathrm{in}}<+20 \mathrm{~V}$. (7 pts)

Question \#2 (9 Points)

Consider the circuit below. All capacitors are "infinite". The source v_{s} is a signal source with no DC voltage ($0 V \mathrm{DC}$) and $\mathrm{v}_{\mathrm{s}} \ll \mathrm{nV}_{\mathrm{T}}$. Diodes are all identical ($\mathrm{n}=2$).

a) Assume the constant voltage drop model. Determine the DC current flowing in each diode. (4 $\mathrm{pts})$
b) Determine the small signal gain $\mathrm{v}_{\text {out }} / \mathrm{v}_{\mathrm{s}^{\cdot}}(5 \mathrm{pts})$

Question \#3 (9 Points)

The NMOS and PMOS transistors in the circuit below are matched with $\left(\mathbf{k}_{\mathbf{n}}{ }^{\prime} \mathbf{W} / \mathbf{L}=\mathbf{k}_{\mathbf{p}}{ }^{\prime} \mathbf{W} / \mathbf{L}=\mathbf{1} \mathbf{m A} / \mathbf{V}^{\mathbf{2}}\right)$ and $V_{t n}=-V_{t p}=1 \mathrm{~V}$, assuming $\boldsymbol{\lambda}=\mathbf{0} \mathbf{V}^{\mathbf{- 1}}$ for both devices find the drain currents $i_{D N}$ and $i_{D P}$ and the voltage v_{O} for:
a) $\mathrm{v}_{\mathrm{I}}=0(4 \mathrm{pts})$
b) $\mathrm{v}_{\mathrm{I}}=2.5 \mathrm{~V}(5 \mathrm{pts})$

For each case, explain the assumption you make for the mode of operation of M1 and M2.

Question \#4 (9 Points)

a) In the following MOSFET circuit, $\lambda=0.05 \mathrm{~V}^{-1}$ and $\mathrm{V}_{\mathrm{tn}}=1 \mathrm{~V}$ and all the capacitors are infinite. Draw the small-signal model. (3 pts)

b) Assume $\mathrm{V}_{\mathrm{S}}=1.5 \mathrm{~V}$ and $\operatorname{Vout}(\mathrm{DC})=3 \mathrm{~V}$. What is the voltage gain of the circuit in part (a)? (2 pts)
c) In the following circuit $|\lambda|=0.05 \mathrm{~V}^{-1}$, Vref $=3 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{tp}}=-1 \mathrm{~V} . \mathrm{I}_{\text {ref }}$ is equal to the I_{DS} found for the circuit shown in part (a). Draw the small-signal model of the circuit below and calculate the drain-source resistance. (4 pts)

