Midterm Examination
Electronic Circuits I-304-330A
October $18^{\text {th }} 2001$, 10:05 AM - 11:25 AM
Professor David Plant

Pertinent Information:

1) This is a closed-book examination, no notes permitted.
2) The examination consists of 4 problems; 37 total possible points.
3) Only the Faculty Standard Calculator is permitted.

Question \#1 [10 pts]:

Consider the following circuit. Ignore the output resistances of the amplifier and voltage sources. Assume n=1 for the diode.

The Voltage Amplifier in the above circuit has the following voltage transfer characteristic:

For parts (a) and (b) V_{S} is off and use the Constant Voltage Drop Model (CVDM) for the diode.
a) [2 pts] Find the values of V_{DC} for which the diode is off.
b) $[2 \mathrm{pts}]$ For $V_{D C}=2.5$, find the value of R 1 for which the current through the diode is 2 mA .

For parts (c),(d) and (e), assume that the $\mathrm{V}_{\mathrm{DC}}=3.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}$ is a small signal source of the form $\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{1} \sin \omega \mathrm{t}, \mathrm{R} 1=2 \mathrm{k} \Omega$ and the DC current through the diode is 0.9 mA .
c) $[2 \mathrm{pts}]$ Draw the small signal equivalent circuit.
d) [2 pts] Write down the expression for the total current through the diode in terms of V_{S}. e) $[2 \mathrm{pts}]$ Find the maximum value for V_{1} for which the circuit operates with no clipping.

Question \#2 [12 pts]:

Consider the following circuit. Assume that both op-amps have infinite gain.

a) [3 pts] Calculate the voltage gain $\left(\mathrm{V}_{\mathrm{o} 1} / \mathrm{v}_{\mathrm{s}}\right)$ of the first stage using the resistor values of Table 1 .
b) $[1 \mathrm{pts}]$ Find the expression (i.e. do not plug in resistor values) for the input resistance (Rin) of the first stage. Assume that R4 is ∞ for this part of the problem only.
c) [3 pts$]$ Calculate the voltage gain $\left(\mathrm{V}_{\mathrm{o} 2} / \mathrm{v}_{\mathrm{o} 1}\right)$ of the second stage using the resistor values of Table 1.
d) [2 pts] Calculate the overall voltage gain: $\mathrm{V}_{\mathrm{o} 2} / \mathrm{v}_{\mathrm{s}}$.
e) [3 pts] Replace R7 by an open-circuit and calculate the gain of the second stage $\mathrm{V}_{\mathrm{o} 2} / \mathrm{v}_{\mathrm{o} 1}$, assuming that $\mathrm{A}=100$.

Question \#3 [10 pts]:

Consider the following circuit. Assume that all diodes are identical with $n=2$, and conduct 5 mA when forward biased at 0.7 V .

a) [3 pts] Calculate R such that the DC output voltage, V_{O}, is -1.25 V . Do NOT assume the Constant Voltage Drop model. Hint: all diodes but one are on.
b) [3 pts] Draw the small-signal equivalent circuit diagram, and calculate the values of the small signal diode resistances.
c) [2 pts $]$ Calculate the small-signal voltage gain V_{o} / v_{s}.
d) [2 pts $]$ Calculate the small-signal input resistance seen by the source, v_{s}.

Question \#4 [5 pts]:

Consider the following circuit.

a) [2 pts] Assume $\beta=\infty, \mathrm{V}_{\mathrm{A}}=\infty$, and $\mathrm{R}_{\mathrm{C}}=4 \mathrm{k} \Omega$. Determine whether or not the BJT is in the active mode.
b) [3 pts] Assume $\beta=100, \mathrm{~V}_{\mathrm{A}}=\infty$, and $\mathrm{R}_{\mathrm{C}}=3 \mathrm{k} \Omega$. Find the DC voltages and currents: $\mathrm{V}_{\mathrm{C}}, \mathrm{V}_{\mathrm{B}}$, $\mathrm{V}_{\mathrm{E}}, \mathrm{I}_{\mathrm{C}}, \mathrm{I}_{\mathrm{E}}$ and I_{B}. Verify the BJT is in the active mode.

