Midterm Examination

Electronic Circuits I - 304-330A October 18th 2001, 10:05 AM – 11:25 AM Professor David Plant

Pertinent Information:

- 1) This is a closed-book examination, no notes permitted.
- 2) The examination consists of 4 problems; 37 total possible points.
- 3) Only the Faculty Standard Calculator is permitted.

Question #1 [10 pts]:

Consider the following circuit. Ignore the output resistances of the amplifier and voltage sources. Assume n=1 for the diode.

The Voltage Amplifier in the above circuit has the following voltage transfer characteristic:

For parts (a) and (b) V_S is off and use the Constant Voltage Drop Model (CVDM) for the diode.

- a) [2 pts] Find the values of V_{DC} for which the diode is *off*.
- b) [2 pts] For V_{DC} = 2.5, find the value of R1 for which the current through the diode is 2mA.

For parts (c),(d) and (e), assume that the $V_{DC} = 3.5V$, V_S is a small signal source of the form $V_S = V_1 \sin \omega t$, $R1 = 2k\Omega$ and the DC current through the diode is 0.9mA.

- c) [2 pts] Draw the small signal equivalent circuit.
- d) [2 pts] Write down the expression for the *total* current through the diode in terms of V_S .
- e) [2 pts] Find the maximum value for V_1 for which the circuit operates with no clipping.

Question #2 [12 pts]:

Consider the following circuit. Assume that both op-amps have infinite gain.

a) [3 pts] Calculate the voltage gain (v_{o1}/v_s) of the first stage using the resistor values of Table 1.

b) [1 pts] Find the expression (i.e. do not plug in resistor values) for the input resistance (Rin) of the first stage. Assume that R4 is ∞ for this part of the problem only.

c) [3 pts] Calculate the voltage gain (v_{o2}/v_{o1}) of the second stage using the resistor values of Table 1.

d) [2 pts] Calculate the overall voltage gain: $v_{o2}\!/v_s$.

e) [3 pts] Replace R7 by an open-circuit and calculate the gain of the second stage v_{o2}/v_{o1} , assuming that A = 100.

Question #3 [10 pts]:

Consider the following circuit. Assume that all diodes are identical with n=2, and conduct 5 mA when forward biased at 0.7V.

a) [3 pts] Calculate R such that the DC output voltage, V_0 , is -1.25V. Do NOT assume the Constant Voltage Drop model. Hint: all diodes but one are on.

b) [3 pts] Draw the small-signal equivalent circuit diagram, and calculate the values of the small signal diode resistances.

c) [2 pts] Calculate the small-signal voltage gain v_o/v_s .

d) [2 pts] Calculate the small-signal input resistance seen by the source, v_s .

Question #4 [5 pts]:

Consider the following circuit.

a) [2 pts] Assume $\beta = \infty$, $V_A = \infty$, and $R_C = 4k\Omega$. Determine whether or not the BJT is in the active mode.

b) [3 pts] Assume $\beta = 100$, $V_A = \infty$, and $R_C = 3k\Omega$. Find the DC voltages and currents: V_C , V_B , V_E , I_C , I_E and I_B . Verify the BJT is in the active mode.