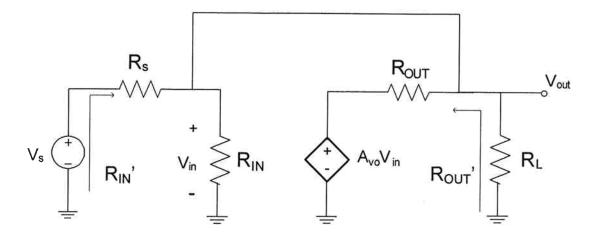
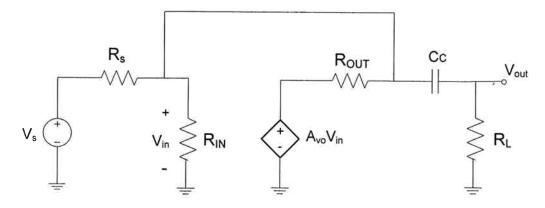


Introduction to Electronics ECSE330 - Sec.001

April 25th 2007, 2:00pm - 5:00pm


Examiner: Prof. Ramesh Abnari Assoc Examiner: Prof. Roni Khazaka
Signature: Signature: McGill ID:

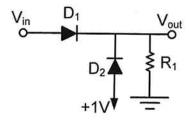
INSTRUCTIONS:


- This is a CLOSED BOOK examination. No notes are permitted.
- There are 2 pages of equations provided at the end of the questions.
- The examination consists of 8 problems with the total possible points of 50. Partial
 point distribution is indicated in brackets.
- The examination consists of 11 pages, including this page and the equation pages;
 make sure you have a COMPLETE exam book.
- Faculty of Engineering STANDARD CALCULATOR permitted ONLY.
- Show your work: Answers without justification will not receive marks. State any assumption you find necessary to complete your answer.

Question 1 (4 pts)

A voltage amplifier has its output connected back to its input as indicated in the figure below.

- a) Derive expressions for the output resistance (R_{OUT} ') and input resistance (R_{IN} ') of the amplifier. (1 pt)
- b) Derive the expression for the overall voltage transfer function (V_{out}/V_s) of the amplifier. (0.5 pt)
- c) The circuit in part c) is now modified such that a coupling capacitor (C_C) is used to connect the output terminal (V_{out}) of the amplifier to the load resistor (R_L) as shown below. Find the cutoff frequency and derive the expression for the modified transfer function $T(s)=V_{out}/V_s$ of the amplifier. (1.5 pt)



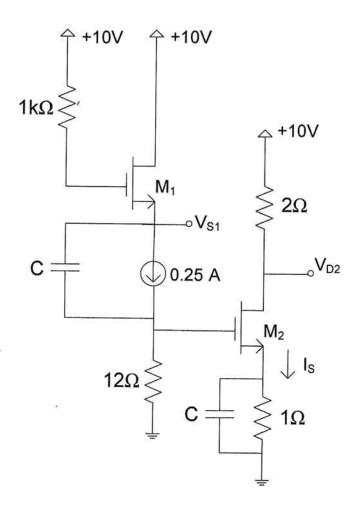
d) Provide a Bode magnitude plot for T(s) derived in part (c) clearly showing all the relevant details. (1pt)

Course: ECSE330 Page 2 of 11

Question 2 (5 pts)

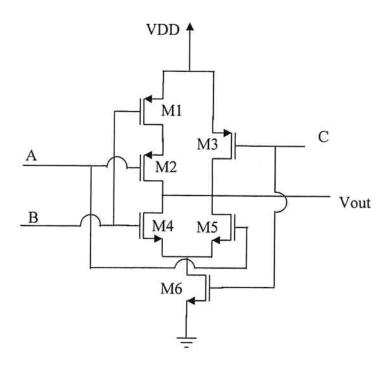
In the following circuit:

 D_1 and D_2 are identical diodes with n=2, $V_T=25~mV$ and $R_1=1K\Omega$.


- a) Use constant voltage drop model (CVDM) for the diodes to find the voltage transfer characteristic of the above circuit (plot V_{out} vs V_{in} for -5V<V $_{in}$ <5V). (2 pts)
- b) Assume that $V_{in}=1.5^{V}+1^{mV}sin(20t)$ and (3 pts)
 - F. Determine the state of each diode.
 - II. Find the DC current going through the diodes that are "on".
 - III. Find the small-signal resistance of the diodes that are "on".
 - IV. Find the DC and AC components of the output voltage.

Question 3 (6 pts)

Assume $V_t = 1V$, k_n ' (W/L) = 2 A/V^2 , $\lambda = 0$ and both transistors are operating in the saturation mode. The current source as shown in the diagram supplies 0.25 A and all capacitors are large. Ignore CLM and body effect.

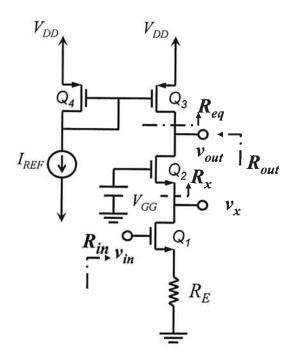

Solve the circuit below for the DC values of:

- a) V_{D2} (2 pts)
- b) V_{S1} (2 pts)
- c) I_S (2 pts)

Question 4 (3 points)

Consider the following digital CMOS circuit with three logic inputs labeled as A, B, and C. Note: VDD is logic 1 and GND is logic 0.

Find Vout for each of the following input combinations. <u>Explain in each case which transistors are ON and which ones are OFF.</u>

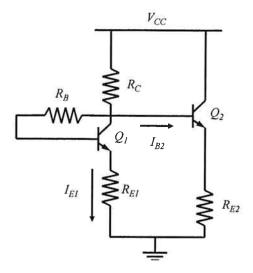

- a) A=0
- B=0
- C=0. (1 pt)

- b) A=1
- B=1
- C=1. (1 pt)

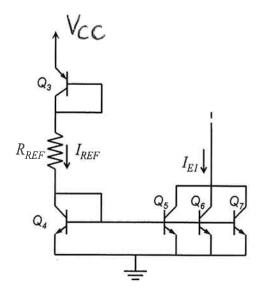
- c) A=0
- B=1
- C=1. (1 pt)

Question 5 (9 Points)

Consider the following circuit. All FETs are operating in saturation.

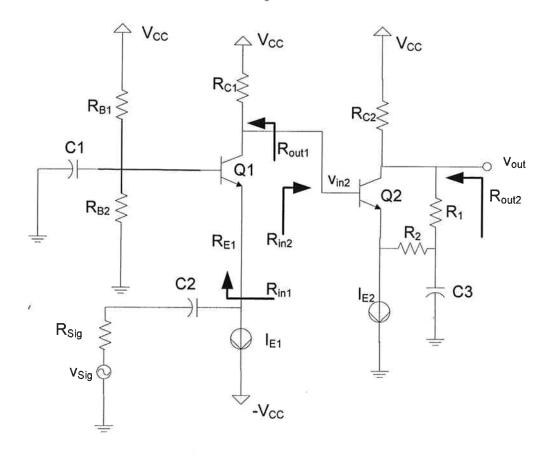

- a) Specify the type of amplifiers configured by Q1 and Q2 (1 pt)
- b) Draw the small signal equivalent circuit for the section of circuit containing Q3 and Q4. Also, find an expression for **Req**. (1.5 pts)

For the following parts replace the loading effect of Q3 with Req. <u>Ignore the channel length modulation but you must include the Body effect if needed.</u>


- c) Draw the small signal equivalent circuit of the entire amplifier circuit. (2 pts)
- d) Find expressions for Rin, Rx and Rout. (2.5 pts)
- e) Find expressions for Vout/Vx and Vout/Vin. (2 pts)

Question 6 (8 pts):

Consider the multistage BJT amplifier shown below. In this circuit, V_{CC} = 2.5V, I_{E1} =2mA, R_B = 2 k Ω , R_C = 0.6 k Ω , R_{E2} = 0.2 k Ω , β =99, and V_A is infinite.


- a) If I_{E1} =2 mA, determine the value of R_{E1} . (4 pts)
- b) If I_{B2} is fixed to value you found in part (a) and I_{E1} =2 mA, determine the minimum value for \mathbf{R}_{C} to keep Q_{1} is the active mode. (1pt)
- c) In order to generate the I_{E1} =2 mA, the following current steering circuit is used, if all BJTs are identical with β =99, find R_{REF} . (3 pts)

Course: ECSE330 Page 7 of 11

Question 7 (10 pts):

Consider the following amplifier circuit. All capacitors are infinite valued.

- a) This is a two stage amplifier. Specify the type of the amplifiers used at each stage. (1 pt)
- b) Draw the small-signal model of the entire circuit and include the early effect. (2 pts)
- c) Derive an expression for R_{out1} including the early effect. (2 pts)

For the following parts ignore the early effect.

- d) Find expressions for Rin1, Rin2, Rout1, Rout2. (3 pts).
- e) Find expressions for the voltage gains, $v_{\text{out}}/v_{\text{in2 and}}$ $v_{\text{out}}/v_{\text{Sig.}}$ (2 pts)

Question 8 (5 pts):

Draw the high-frequency hybrid- π model of the BJT. (2 pts)

- a) Derive an expression for the short circuit current gain, h_{fe} = I_c/I_b . (2 pts)
- b) Derive an expression for the unity-gain bandwidth, f_T . (1 pts)

Diodes:
$$i=I_s(exp(v/nV_T)-1)$$

FETs:

NMOS:

$$V_{GS} < V_{\iota}$$

$$I_D = 0$$

$$k'_n = \mu_n C_{OX}$$

$$V_{GS} > V_{I}$$

$$V_{GS} > V_{t}$$
 $I_{D} = k_{n}^{t} \frac{W}{L} [(V_{GS} - V_{t})V_{DS} - \frac{1}{2}V_{DS}^{2}]$
 $V_{DS} < V_{GS} - V_{t}$

$$V_{GS} > V_{I}$$
 $V_{DS} > V_{GS} - V_{I}$

$$V_{i} = V_{i0} + \gamma \left(\sqrt{2\phi_{f} + V_{SB}} - \sqrt{2\phi_{f}} \right)$$

PMOS:

$$V_{GS} > V_{t}$$

$$I_D = 0$$

$$V_{GS} < V_t$$

$$I_D = k_p' \frac{W}{L} \left[\left(V_{OS} - V_i \right) V_{DS} - \frac{1}{2} V_{DS}^2 \right]$$

$$V_{DS} > V_{GS} - V_{I}$$

$$V_{GS} < V_{\iota}$$

$$I_D = \frac{1}{2} k_p' \frac{W}{L} (V_{CS} - V_i)^2 (1 + \lambda V_{DS})$$

$$|V_i| = |V_{i0}| + \gamma \left(\sqrt{2\phi_f + |V_{SB}|} - \sqrt{2\phi_f} \right)$$

SMALL SIGNAL

Body effect:

$$g_m = \frac{2 \cdot I_D}{V_{GS} - V_C}$$

$$g_m = k_n^t \frac{W}{L} (V_{GS} - V_t) (1 + \lambda \cdot V_{DS})$$

$$g_{\rm m} = \sqrt{2k_n'} \sqrt{\frac{W}{L}} \sqrt{1 + \lambda \cdot V_{DS}} \sqrt{I_D}$$

$$r_o = \frac{1}{\lambda \cdot I_D}$$

$$g_{mb} = \chi \cdot g_m$$

Two-Page Formula Sheet Page 1 0 2

BJTs:

$$i_C = I_S \exp(v_{BE}/V_T)$$

$$i_B = \frac{i_C}{\beta}$$

$$i_E = \frac{i_C}{\alpha}$$

$$i_B = (1 - \alpha)i_E = \frac{i_E}{\beta + 1}$$

$$i_E = (\beta + 1)i_B$$

$$g_m = \frac{I_C}{V_T} \quad r_e = \frac{V_T}{I_E} = \alpha \frac{V_T}{I_C} = \frac{\alpha}{g_m}$$

$$r_{\pi} = \frac{V_T}{I_B} = \frac{\beta}{g_m} \quad r_o = \frac{V_A}{I_C}$$

$$r_{\pi} = (\beta + 1)r_e$$

$$\beta = \frac{\alpha}{1-\alpha} \alpha = \frac{\beta}{\beta+1} \beta+1 = \frac{1}{1-\alpha}$$