$$
\begin{align*}
& \text { Frain "chopter } 3 \text {, ne solulars" } \\
& \text { i. Express.ons } v_{1}+v_{2}=1.657 \mathrm{~V} \text { (1) } \\
& V_{D O}-I(1.67 k)=5-1.67 \mathrm{kI}=1.657 \mathrm{~V} \text { (2) } \\
& I=I_{s} e^{\frac{V_{1}}{n V_{E}}} \tag{3}\\
& \frac{I}{M}=I_{S} e^{\frac{V_{2}}{n V T}} \tag{4}
\end{align*}
$$

$$
\begin{aligned}
& \Rightarrow \text { (2) yield, } I=2 m \text { divilly } \\
& \Rightarrow \text { mulliph (3) } \times(4) \rightarrow \frac{I^{2}}{M}=I_{5}^{2} \frac{\sqrt{v_{1}+v_{2}} \rightarrow \text { lcusem From (1) }}{n^{2}} \\
& \Rightarrow \text { use (1) } \rightarrow N_{i}=\frac{L^{2}}{I_{3}{ }^{2} e^{\frac{1.657}{1.25(25 \mathrm{~m})}}}=37.56 \text { (pick a real integer: } 37 \text { or } 38 \text {) }
\end{aligned}
$$

\therefore a. wew sulve (3) (4) for i, va ewsily.

\Rightarrow We must make assumpliass \& test Dem!

$$
\begin{aligned}
& \Rightarrow \text { is } b_{3} \text { aff? Try T! } \\
& \Rightarrow \text { get } \frac{8-v_{2} i}{z k}=\frac{(1, i-0 z)+?}{h} \\
& v_{\text {a }}=-5.60 \text {, so note e }-6.30
\end{aligned}
$$

$\Rightarrow 02$.ff w_{4} lld be bomesty incarsistent!
$\Rightarrow D_{2}$ an puts nose " A " T (yaun) \Rightarrow aryod Er 03 of

$$
\begin{aligned}
& \therefore \mathrm{OB} \text { is ON } \\
& \rightarrow \text { so note "A" is ai } V, C \\
& \rightarrow \text { Ty } 0_{2} \text { off: } \frac{(0, \pi-0.7)+8}{1 k}=\frac{8-v . \pi}{4 k}+\frac{8-V \cdot \bar{c}}{8 k}=3 \times \frac{8-1.5}{8 k} \quad v_{2 \pi}=-3.127 \mathrm{~V} \\
& \Rightarrow \text { isD2 Aff? YES }
\end{aligned}
$$

-Goluton is casistent.
3.
a)

b) by 5 ymmelry: $I_{0,1,3,4}=\frac{I_{\text {res }}}{2} ; r_{j}=\frac{2 n v^{V_{T}}}{I_{r e f}}$
c)

A. D_{2}, O_{3} ff by inspection $\mathrm{O}_{1}, \mathrm{O}_{4}$ cannot b, th be m D_{5} is most likely old $\rightarrow V_{0}=1.3 \rightarrow \mathrm{CO}_{1}$ on?
check 07 : 4 off as assume.
b) $I=\frac{1.3}{400} 7.035 \mathrm{mt}$ (There mast be 1.25 mt in $05 \ldots 0$. is ON as expected
c) $I_{3011}=2 m \mathrm{~m}$.
5.a) $0,0,0$ off by impation
$I_{O_{2}}=I_{1}, I_{O_{3}}=I_{2}, I_{09}=I_{1}, I_{2} \rightarrow$ hese 3 vipese are ㄹ..
b)

c) $\frac{V_{m i}}{r_{\text {m }}}=\frac{q_{1} \| r_{84}}{a_{1} \| r_{34} r_{r_{4}}}=0.196 / \mathrm{V}$

$$
r_{32}=\frac{n V_{T}}{I_{1}} ; \quad r_{39}=\frac{n V_{t}}{I_{1}+I_{2}}
$$

$$
\begin{aligned}
& \rightarrow 07 \text { on regures } 04,0 ;, 06 \text { an to, } \rightarrow I_{07,56,7}=\frac{I}{?}
\end{aligned}
$$

01,02 are off (because v in is not $O C$ inn.T)

$$
\frac{v_{\text {rut }}}{v_{1 n}}=0.204 \mathrm{~V} / \mathrm{V} \text { by andysis }
$$

8-9 (skip)
is OC vant/gS $-I_{R_{1}}=\frac{5 \mathrm{~V}}{f_{1}} i_{R_{2}}=\frac{4.3 \mathrm{~V}}{R_{2}}$

$$
R_{1 n}=R_{1} \|\left(R_{2} \times\left(1+\frac{n V_{T}}{4.3}\right)\right)
$$

7. (contd...)

1- When both diodes are off:

$$
V_{\text {out }}=\frac{10 k \Omega}{10 k \Omega+10 k \Omega} V_{\text {in }}=V_{\text {in }} / 2
$$

2-The required input voltage to create the "ON" voltage at the cathode of D_{2} (let's call it V_{A}):

When diode hasn't switched yet,

$$
I_{D 2}=0 A \Rightarrow V_{A}=\frac{10 k \Omega}{10 k \Omega+10 k \Omega} V_{i n}=V_{i n} / 2
$$

We know V_{A} should be $\mathrm{V}_{\mathrm{A}}<-2.3-0.7=-3$ (note not -1.6) to switch D_{2} "ON"
Therefore $\mathrm{v}_{\text {in }}<-6$ for switching D_{2} "ON" and $\mathrm{v}_{\text {out }}=-3$
3- Now, the required input voltage to create the "ON" voltage at the Anode of D_{1} (let's call it V_{A} again, it is the same node):

When the diodes are still off,
$I_{D 2}=0 A \Rightarrow V_{A}=\frac{10 k \Omega}{10 k \Omega+10 k \Omega} V_{i n}=V_{\text {in }} / 2$

We know V_{A} should be $\mathrm{V}_{\mathrm{A}}>2.3+0.7=3$ to switch D_{1} " ON "
Therefore $\mathrm{v}_{\text {in }}>6$ for switching D_{1} " ON " and $\mathrm{v}_{\text {out }}=3$

