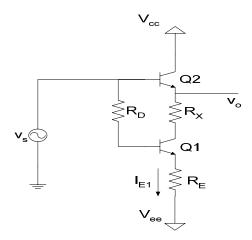

Question #1



Consider this common-emitter amplifier. You must bias the BJT so that you can get the maximally symmetric output swing. Design assuming a V_B of 0.7V. Find an expression that relates the resistances R_{B2} , R_{B1} and R_D to the values of V_{DD} and β . For V_{DD} =10V and β =100, choose R_{B1} =9k Ω , R_{B2} =1k Ω and calculate R_D .

Question #2 (problem 5.83 from text)

Question #3

In this circuit, you may neglect the Early Effect. Assume both transistors are identical (same β) and have $V_{BE} = 0.7V$.

Assume the following: $v_s = 0$, $R_X = 50\Omega$, $R_D = 70k\Omega$ and $I_{E1} = 1mA$. Find a condition on β that ensures that Q1 will be in the active mode. (4 pts)