

Course Evaluation

- On line course evaluation
- Accessible through WebCT account

ECSE-330: Introduction to Electronics Winter Session, 2008

What You Already Know (ECSE-210)

- Circuit models resistors, capacitors, inductors
- KVL and KCL
- Branch relationships
- Resistive circuit analysis
- Network theorems including one and two port networks
- Steady state, transient and frequency analysis

What Was Covered

- Chapter 1) Introduction to Analog and Digital Electronics Sections 1.4-1.7
- Chapter 3) The PN Junction and Diodes Sections 3.1-3.7
- Chapter 4) Field-Effect Transistors

Sections 4.1-4.10, (also 10.3, 6.3)

Chapter 5) Bipolar Junction Transistors Sections 5.1-5.10, (also 6.3)

Chapter 2 was NOT covered

Upon Completion of the Course

- Design and analysis of circuits:
 - Rectify signals diodes
 - Amplify signals analog functions
 - *Digital circuits* digital signal processing
- Design principles behind the realization of modern *Integrated Circuits (ICs)*
- An understanding of physical principles behind the operation of transistors and diodes
- Everything you need to know for ECSE-334, Electronic Circuits II.

Outline of Chapter 1

Analog Amplifiers

- Linear amplifiers and transfer characteristics
- Classification of ideal amplifier topologies and desirable properties
- Input/Output resistance

Digital Logic Inverters

- Voltage transfer characteristic
- Noise margins

Frequency Response

- STC circuits
- Transfer function
- Bode plots

Attach Source and Output Loads

1) $A_V < A_{VO}$ due to two voltage divisions: source and load 2) A_V maximized with large R_{IN} , small R_{OUT}

Finding R_{IN}

 R_{IN} is the resistance "seen" between the input node and ground With input signal applied, v_{in} and i_{in} signals are established

Important: R_{IN} can usually be obtained by inspection

Finding R_{OUT}

- Alternatively, one can determine R_{OUT} as follows:
 - "Kill" the input signal (set v_{in} or i_{in} to zero)
 - Apply a test voltage signal v_x to the output node
 - Determine the current i_x it supplies to the circuit

Cascaded Amplifier Stages

• e.g. cascaded voltage amplifiers:

• By inspection, working from output to input:

$$A_{V} = \frac{v_{out}}{v_{s}} = \frac{R_{L}}{R_{L} + R_{OUT2}} \cdot A_{VO2} \cdot \frac{R_{IN2}}{R_{IN2} + R_{OUT1}} \cdot A_{VO1} \cdot \frac{R_{IN1}}{R_{IN1} + R_{S}}$$

• Equally simple for other amplifier cascades

Measuring Frequency Response

• The **frequency response** of an amplifier is completely known by the **magnitude (or amplitude) response** and **phase response**

$$\left|T(\omega)\right| = \frac{V_o}{V_i}$$

$$\angle T(\omega) = \phi$$

• Often the magnitude plot is given in decibels and $20\log|T(\omega)|$ is plotted versus frequency

Outline of Chapter 3 - Diodes

- Exponential model
- Constant voltage drop model
- Applications
- Small-signal model
- PN junctions

Diode Symbol and Terminal Characteristics

Last Class 13

The Constant Voltage Drop Model (CVDM)

- Exponential model gives accurate results; requires hand computation or a simulator
- The constant voltage drop model (CVDM) used to perform quick analysis of a diode circuit by hand
- CVDM approximates diode I-V curve piecewise-linearly

Last Class 14

Small-Signal Analysis Technique Summary

- Tool for analyzing the behavior of circuits that employ active devices and small signals
- Through linearization of exponential model, can separate DC & AC analysis; linear superposition
- Analysis procedure
 - Turn off AC sources, solve for DC operating point
 - Based on DC operating point parameters, solve for small signal-signal equivalent circuit model parameters
 - Construct small-signal equivalent circuit; short circuit voltage sources and open circuit current sources
 - Solve for AC parameters

Outline of Chapter 4

- Introduction to MOS Field Effect Transistor (MOSFET)
- NMOS FET
- PMOS FET
- DC Analysis of MOSFET Circuits
- MOSFET Amplifier
- MOSFET Small Signal Model
- MOSFET Integrated Circuits
- CSA, CGA, CDA
- CMOS Inverter & MOS Digital Logic
- High frequency model and Frequency response of CSA

nMOS Circuit Symbol

- A MOSFET is a *four-terminal* device
- Body terminal *always* biased at *most negative* potential

- Simplified symbol with implicit Body terminal connection
- Arrow indicates direction of current

pMOS Circuit Symbol

- A MOSFET is a *four terminal* device
- Body terminal *always* biased at *most positive* potential

- Simplified symbol with implicit Body terminal connection
- Arrow indicates direction of current flow

Summary of Enhancement nMOS FET I-V Characteristics

Cutoff: $V_{GS} < V_t$ $I_{D} = 0$ $V_{GS} > V_t \qquad I_D = k'_n \frac{W}{L} \left[(V_{GS} - V_t) V_{DS} - \frac{1}{2} V_{DS}^2 \right]$ $V_{DS} < V_{GS} - V_t \qquad I_D = k'_n \frac{W}{L} \left[(V_{GS} - V_t) V_{DS} - \frac{1}{2} V_{DS}^2 \right]$ Triode: Saturation: $\frac{V_{GS} > V_t}{V_{DS} > V_{CS} - V_t} \qquad I_D = \frac{1}{2}k'_n \frac{W}{L} (V_{GS} - V_t)^2 (1 + \lambda V_{DS})$ V_{DS} Body effect: $V_t = V_{t0} + \gamma \left(\sqrt{2\phi_f + V_{SB}} - \sqrt{2\phi_f} \right)$ $V_{\rm GS}$ Last Class 19

Summary of pMOS FET I-V Characteristics

Cutoff:	$V_{GS} > V_t$	$I_D = 0$		
Triode:	$V_{GS} < V_t$ $V_{DS} > V_{GS} - V_t$	$I_{D} = k'_{p} \frac{W}{L} \left[(V_{GS} - V_{t}) V_{DS} - \frac{1}{2} V_{DS}^{2} \right]$	S O -	
Saturation	$V_{GS} < V_t$ $V_{DS} < V_{GS} - V_t$	$I_D = \frac{1}{2} k'_p \frac{W}{L} \left(V_{GS} - V_t \right)^2 \left(1 + \lambda V_{DS} \right)$		5
			I _G =0 I _D	
Body effe	$\mathbf{ct:} \left V_t \right = \left V_{t0} \right + 2$	$\gamma \left(\sqrt{2 \phi_f + \left V_{SB} \right } - \sqrt{2 \phi_f} \right)$	D o +	

Note: V_{GS} , V_{DS} , V_{SB} , V_t , λ , are all NEGATIVE

Hybrid-π Small Signal Model

- AC Body effect: another VCCS (dependent on g_{mb}) in parallel with the one dependent on g_m
- T model generally not used when modeling Body effect, regardless of circuit topology

The MOSFET T Small Signal Model

Outline of Chapter 5

- Introduction to The Bipolar Junction Transistor
- Active Mode Operation of the npn and pnp BJTs
- DC Analysis of BJT Circuits
- BJT as an Amplifier
- BJT Small Signal Models
- CEA, CEA with R_E , CBA, & CCA
- Integrated Circuit Amplifiers
- High-frequency model and frequency response

Bipolar Junction Transistor (BJT)

• 3 terminal device in which the voltage across 2 terminals controls the current flowing in/out of a 3rd terminal:

Summary of npn Active Mode Characteristics

Last Class 25

Summary of pnp Active Mode Characteristics

$$I_{C} = I_{S} \exp\left(\frac{V_{EB}}{V_{T}}\right) \left(1 + \frac{V_{EC}}{V_{A}}\right)$$

$$I_B = \frac{I_C}{\beta} \qquad r_o = \frac{V_A}{I_C}$$

$$I_{C} = \alpha I_{E}; \qquad \alpha = \frac{\beta}{\beta + 1} \approx 1$$
$$I_{E} = (\beta + 1)I_{B}$$
$$I_{E} = I_{C} + I_{B}$$

 $V_E \ge V_B > V_C; \quad V_{EB} \approx 0.7V$

Hybrid-π Small Signal Models

VCCS based model

CCCS based model

T-Models

VCCS based model

 $\dot{i}_e = rac{v_{be}}{r_e}$ $r_e = rac{lpha}{g_m} = rac{V_T}{I_E}$

CCCS based model

$$g_m v_{be} = (g_m r_e) i_e = \alpha i_e$$

Last Class 28

Beginning of the Transistor Era

- 1st transistor invented in 1947 at Bell Laboratories.
- Invented by Brattain and Bardeen.
- PNP point-contact germanium transistor.
- Operated as a speech amplifier with a power gain of 18.

And now?

- The Pentium IV with 55 million transistors
- These transistors are located in an area of ~12 mm x 12 mm
- 0.13µm technology, 0.09µm technology is also available

And now?

- Feb. 2005, *IEEE International Solid-State Conference (ISSCC)*
- CELL Processor (designed and developed by SONY, Toshiba, IBM):
 - The first consumer exposure was in Sony's PlayStation 3 game console
 - 4 GHz, 1.1V Vdd, BGA package (42.5 mm by 42.5 mm), 90 nm process
 - One sample operate at 5.6 GHz with 1.4V Vdd
- ➤ CMOS used for short-range wireless communications at 60 GHz, 0.13µm technology
 - Wireless-LAN ICs delivered as single-chip solutions, built in CMOS at foundries in Taiwan.
 - Texas Instruments Inc. shakes up the cost-sensitive handset market with baseband-plus-RF parts made in 90-nanometer CMOS.

Near Future

• We want to develop Personal Area Networks using CMOS wireless electronics

ECSE-330B Electronic Circuits I

Final Exam Topics

- Amplifiers
 - General amplifier analysis and frequency response
- Diodes:
 - DC analysis including exponential and CVD
 - Small signal analysis including diode small signal resistance
 - Applications and circuits
- FETs:
 - NMOS, PMOS
 - DC analysis
 - Cut-off/triode/saturation behavior
 - Small signal modeling including CSA, CGA, CDA
 - Multistage amplifiers
 - Body effect and Channel Length Modulation (DC and small signal)
 - Current mirrors DC and small signal
 - High frequency model and frequency response of CSA

Final Exam Topics

- BJTs:
 - NPN, PNP
 - DC analysis
 - Cut-off/saturation/active behavior
 - Small signal modeling including CEA, CEA with RE, CBA, CCA
 - Early effect
 - Multistage amplifiers
 - Current mirrors DC and small signal
 - High frequency model and frequency response of CEA

All topics including physics, derivations, problem solving and numerical calculation

ECSE-330: Electronic Circuits I Winter Session, 2008

Good Luck, and

Have a great Summer!

Last Class 36