

Outline of Chapter 5

- 1- Introduction to The Bipolar Junction Transistor
- 2- Active Mode Operation of BJT
- 3- DC Analysis of Active Mode BJT Circuits
- 4- BJT as an Amplifier
- 5- BJT Small Signal Models
- <u>6- CEA, CEA with R_E, CBA, & CCA</u>
- 7- Integrated Circuit Amplifiers

CBA with r_o (Resistance Coupling C-E)

• Original results neglecting R_S, R_L, & r_o:

Open circuit voltage gain

$$A_{VO} = \frac{v_{out}}{v_{in}} = g_m R_C$$

Short circuit current gain

$$A_{IS} = \frac{i_{out}}{i_{in}} = \alpha$$

$$R_{IN} = r_e$$

$$R_{OUT} = R_C$$

CBA with r_o-Voltage Gain

Large r_o has little effect on gain BJTs 3

CBA with r_o Short-Circuit Current Gain

If r_o is large, it will have little effect on the overall gain

$$\alpha i_e + i_x + i_{Output} = 0$$

$$-i_{Input}-i_e-i_x=0$$

$$i_e r_e = i_x r_O$$

CBA with r_o-Input Resistance

CBA with r_o-Output Resistance

CCA Operation – Voltage Buffer

- Good voltage buffer
 - The VOLTAGE gain is almost unity, and the DC component is only reduced by 0.7V
 - Large short circuit current gain
 - High input resistance (which reduces loading to the circuits before)
 - Low output resistance (which reduces the loading to the circuits after)

CCA with r_o - Input/Output Resistance

Input Resistance; by inspection using β+1 rule:

$$R_{IN} = \frac{8k\Omega}{(\beta + 1)(r_e + r_o / R_E)}$$

HIGH INPUT RESISTANCE

• Output Resistance, $v_{in} = 0$

$$R_{OUT} = r_e // r_o // R_E$$

LOW OUTPUT RESISTANCE

CEA with RE- Internal Feedback

- Consider the small-signal T-model for the CEA configuration
- Base is input, collector is output
- r_e (or r_π in Hybrid- π model) <u>AND</u> r_o both represent internal feedbacks from output to input; if emitter is grounded, feedback broken; if RE is present, feedback exists.

Internal Feedback – Summary

- CBA configuration:
 - r_o produces internal feedback between C & E terminals
 - expect effects to be *weak* since r_0 large
- CCA configuration:
 - r_{π} or r_{e} produces internal feedback between B & E terminals
 - expect strong effect on R_{IN} & R_{OUT}
- CEA with R_E amplifier configuration:
 - r_o provides internal feedback between E & C terminals
 - occurs because emitter not at signal ground
 - expect *weak* effects since r_0 large (More in EC2)
- CEA (no R_E) amplifier configuration:
 no internal feedback between B & C terminals

Multistage Amplifier – DC Analysis

- Cascade of C-E stages
 - Output of Q₁ stage is direct-coupled (DC) to input of Q₂ stage
- Coupled DC analysis!

Outline of Chapter 5

- 1- Introduction to The Bipolar Junction Transistor
- 2- Active Mode Operation of BJT
- 3- DC Analysis of Active Mode BJT Circuits
- 4- BJT as an Amplifier
- 5- BJT Small Signal Models
- 6- CEA, CEA with R_E , CBA, & CCA
- <u>7- Integrated Circuit Amplifiers</u>

Integrated Circuits

- Issues:
 - Limited area available
 - Size of R's and C's limited
 - Process variations

- Concept:
 - Integrate multiple transistors and passive components (R's and C's) on a single chip
 - Circuit performs applicationspecific function (ASIC)
 - Physically smaller, faster
- Coupling capacitors:
 - On-chip: ~ pF's only
 - Off-chip: $\sim \mu F's$
- Resistors:
 - Pure resistors are difficult to make on an IC
 - Alternative: a transistor

Q1

 V_{IN}

Active Loads VCC VBB Q2 Q2 V_{OUT} V_{OUT} V_{OUT}

V_{IN} O

Q1

- Replace R_C with PNP transistor, Q2
 - Q2 base held at constant voltage.
- Q1 load resistance becomes r_o of Q2.

CEA Gain with Active Load

Current Mirrors

- CBA and CCA conveniently biased with current sources
- On an IC, a current source is implemented using transistors
- I_{REF} can be implemented off-chip, resistor
- Transistor Q2 pulls current from attached circuit
- Collector current of Q1 and Q2 identical because of V_{BE} is the same (r_o neglected)

Current Mirror DC Analysis

- Neglect r_o (in EC1 DC analysis) and assume Q1 and Q2 active
- If Q1 has a collector current of I, then there must be a base current of I/β .
- This sets-up a Q1 V_{BE1} that is "mirrored" across to the base emitter of Q2, V_{BE2} .
- V_{BE2} draws a current of I from the Q2 collector.

$$I_{REF} = I + 2\frac{I}{\beta}$$

$$\frac{I}{I_{REF}} = \frac{1}{1 + \frac{2}{\beta}}$$

Current Mirror DC Analysis

Impact of current mirror is to add a load r_o to circuit that is drawing current Note: In AC analysis r_o is included

Current Mirroring – Multiple Copies

VCC

Current Mirroring – Scaling

- Can produce multiples of I by connecting transistors in parallel
- However, the output resistance is decreased by a factor

VEE

VEE

VEE

Current Mirroring – Pushing and Pulling VCC VCC V_{EB} EB -2Ι/β 2Ι/β-**Q1 Q2** VCC 21 21 Circuit "A" $\mathsf{R}_{\mathsf{REF}}$ 21₀ REF Circuit "B" Ι, Ι, ο, **Note:** β is assumed to be very **Q1** Q3 **Q4** large thus the current pushed to circuit B is approximated BE equal to 2I. The exact answer

VEE

is $2I/(1+2/\beta)$

Outline of Chapter 5

- <u>1- Cut-off and Saturation Modes</u>
- 2- Digital Circuits

4 Modes of operation

	B-E Junction	B-C Junction
Cutoff	reverse	reverse
Active	forward	reverse
Saturation	forward	forward
Reverse Active	reverse	forward

Cutoff Mode

• Reverse-bias drift currents are *SMALL*

- Cutoff mode:
 - B-E pn junction reverse-biased
 - B-C pn junction reverse-biased
 - Drift currents:
 - –From E to B
 - –From C to B

4 Modes of operation		
	B-E Junction	B-C Junction
Cutoff	reverse	reverse
Active	forward	reverse
Saturation	forward	forward
Reverse Active	reverse	forward

1 Modes of energian

- Saturation mode:
 - B-E pn junction forward-biased
 - B-C pn junction forward-biased

- Electron diffusion current from E to B
 - Base recombination
 - Traverses base into collector

- Electron diffusion current from C to B
 - Base recombination
 - Traverses base into emitter

Saturation Mode – I_C, I_B, and I_E

- β (and α) as we know it only applies in active mode
- "new" β (β_{forced}) set by external components

$$V_{CE-SAT} = 0.2V$$

$$I_E = I_C + I_B$$

R_c

-0.5V

β**=99**

 $V_{EE} = -5V$

-0.7V

 $R_{r}=3.3k\Omega$

 $V_{cc} = 5V$

Saturation DC Analysis

• Apply voltage drop criteria, solve for currents

$$I_E = \frac{-0.7 + 5}{3.3k} = 1.303 mA$$

$$I_C = \frac{5 + 0.5}{5k} = 1.1 mA$$

$$I_B = I_E - I_C = 203 \mu A$$

$$\beta_{forced} = \frac{I_C}{I_B} = \frac{1.1m}{203\mu} = 5.4 << \beta$$

Comments

- $\beta_{\text{forced}} \ll \beta$ in saturation
- Current directions (I_C, I_B, I_E) same as for active mode
- All concepts & expressions same for **PNP** in saturation

CEA as an Inverter

• The large negative voltage gain of the CEA was:

$$A_{VO} = \frac{v_{out}}{v_{be}} = -g_m \left(r_o \| R_C \right)$$

- This produces a sharp linear region that describes Vout/Vin for device in active-mode.
- Max. output (cut-off) and min. output (saturation).
- Through analysis, we can describe the Voltage Transfer Characteristic (VTC)

• When $V_{IN} = 0$ - BJT is in cutoff

$$- I_{\rm C} = 0$$
$$- V_{\rm OUT} = {\rm VCC}$$

• When $V_{IN} = 5$ - BJT is in saturation - $V_{OUT} = 0.2$

CEA Inverter - V_{IL}

- BJT remains in cutoff until V_{IN} ≈ 0.7V, then enters active mode because B-E junction goes into FWD bias
- As V_{IN} rises in active mode, V_{OUT} decreases

$$v_{be} = \frac{r_{\pi}}{r_{\pi} + R_B} v_{IN} \quad v_{OUT} = -g_m v_{be} (r_0 //R_C) \quad r_{\pi}$$

$$A_{V} = \frac{v_{OUT}}{v_{IN}} = \frac{-g_{m}r_{\pi}}{r_{\pi} + R_{B}} (r_{0} / / R_{C}) = \frac{-\beta}{r_{\pi} + R_{B}} (r_{0} / / R_{C})$$

CEA Inverter - V_{IH}

- To find V_{IH} :
 - Must use the "Edge-of-Saturation" (EOS)
 - The Max. I_B at the threshold of Active/Sat. defined as I_{B-EOS}

$$V_{IN} = 0.7 + I_B R_B$$

$$I_{B-EOS} = \frac{I_{C-SAT}}{\beta} = \frac{V_{CC} - V_{CE-SAT}}{\beta R_C}$$

$$V_{IH} = 0.7 + I_{B-EOS}R_B = 0.7 + \frac{V_{CC} - V_{CE-SAT}}{\beta R_C}R_B$$

CEA Inverter Voltage Transfer Characteristic (VTC)

Consider $V_{CC}=5V$, $R_B=10k\Omega$, $R_C=1k\Omega$, $\beta=100$, $V_A=100V$

Hand-analysis:

Noise margins: $NM_{H} = V_{OH} - V_{IH} = VCC - 0.7V - I_{B-EOS}R_{B}$ $NM_{L} = V_{IL} - V_{OL} = 0.7V - V_{CE-SAT} = 0.5V$ $NM_{H} = 3.82V$ $NM_{L} = 0.5V$

Resistor-Transistor Logic (RTL) Inverter

Popular technology in 1960's

• Using equations:

More in EC2