Outline of Chapter 5, Section 5.8-5.9

- 1- High-Frequency Model of BJT
- 2- Frequency Response of CEA
- Note: Frequency response of CBA and CCA are covered in EC2

High-Frequency Model

- The small signal model discussed was assumed to be instantaneous and no reactive element was included.
- We add the capacitive effects due to the pn junctions to the hybrid- π model
- The average time that a charge carrier spends in crossing the base is called **forward base-transit time** τ_F

– This represent the small-signal diffusion capacitance C_{de}

$$C_{de} = \tau_F g_m = \tau_F \frac{I_C}{V_T}$$

• The total BEJ capacitance is called C_{π} and is composed of two parts: $C_{\pi} = C_{de} + C_{ie}$

High-Frequency Model

- There is also the Base-Emitter junction capacitance in the forward bias C_{je} $C_{ie} \cong 2C_{ie0}$
- Where C_{je0} is the value of C_{je} when zero voltage is applied to EBJ
- CBJ is reverse biased and its junction depletion capacitance is $C = \frac{C_{\mu 0}}{0.25}$

$$U_{\mu} = \frac{C_{\mu 0}}{\left(1 + \frac{V_{CB}}{V_{0c}}\right)^{m}} \qquad 0.2$$

 $0.2 \le m \le 0.5$

• Where V_{0c} is the CBJ built-in voltage (0.75V), $C_{\mu 0}$ is the value of C_{μ} when zero voltage is applied and m is the grading coefficient

High-Frequency Hybrid- π Model

• Two capacitances: Capacitance C_{π} is usually larger than Cµ (Fig. 5.67):

- Note: There is new high-frequency component, resistor $\mathbf{r}_{\mathbf{x}}$
 - $-r_x$ represents the resistance of the Silicon in the base region.
 - It is a few tens of Ohms.
- Since $r_x \ll r_{\pi}$, it is neglected at low frequencies

BJT Unity-Gain Bandwidth

- Unity-gain bandwidth, f_T , is a figure of merit for high-frequency operation.
- It is found from the short circuit current gain of CEA, $h_{fe}=I_c/I_b$

BJT Unity-Gain Bandwidth

Frequency Response of CEA

High-Frequency Response (CEA)

- f_H and f_L are frequencies at which gain is 3 dB lower than the midband value $|gain|=|A_{M}|/\sqrt{2}$
- 3dB bandwidth is:

$$BW \equiv f_H - f_L$$

- $BW \cong f_H$ • If $f_{\rm L} << f_{\rm H}$ then
- A figure of merit for an amplifier is gain-bandwidth ${\color{black}\bullet}$ product

$$GB \equiv \left| A_{M} \right| BW$$

- CEA $V_{sig} \stackrel{R}{\leftarrow} R_B \stackrel{r_x}{\leftarrow} r_{\pi} \stackrel{R}{\leftarrow} P_{\pi} \stackrel{r_x}{\leftarrow} P_{\pi} \stackrel{R}{\leftarrow} P_{\pi} \stackrel{r_x}{\leftarrow} P_{\pi} \stackrel{R}{\leftarrow} P_{\pi} \stackrel{r_x}{\leftarrow} P_{\pi} \stackrel{r_x}{$
- Using Thevenin Theorem

 R_C

 C_{C2}

 $-0V_o$

Low-Frequency Response (CEA)

• Ignoring internal capacitances and r_x

 C_{C1}

Low-Frequency Response (CEA)

- To find the time constant for poles f_{p1} , f_{p2} and f_{p3}
 - Set source to zero
 - Consider each C separately (others are short circuit)
 - Find the total resistance seen between the two terminals of C

Low-Frequency Response (CEA)

• When all three Cs are present and do not interact;

$$\frac{V_o}{V_{sig}} = -A_M \frac{s}{s + \omega_{P1}} \frac{s}{s + \omega_{P2}} \frac{s}{s + \omega_{P3}}$$

- The f_L is determined by the highest f_P (Often f_{P2})
- When the three Cs interact, the f_L is considered as the summation of f_{P1} , f_{P2} , f_{P3} for approximate hand calculations or SPICE simulations are used to find it.
- If it is not mentioned in the problem, consider that the Cs do not interact