

Outline of Chapter 5

- 1- Introduction to The Bipolar Junction Transistor
- 2- Active Mode Operation of BJT
- <u>3- DC Analysis of Active Mode BJT Circuits</u>
- 4- BJT as an Amplifier
- 5- BJT Small Signal Models
- 6- CEA, CEA with R_E , CBA, & CCA
- 7- Integrated Circuit Amplifiers

DC Analysis – Requires Assumptions

Find voltages & currents

Process:

- a) Assume *active* mode operation; $V_{BE} = 0.7V$
- b) Based on assumption, calculate branch voltages and currents
- c) Verify *active* mode by checking $V_{CB} > 0V$

Perform Analysis

$$I_{B} = \frac{I_{E}}{\beta + 1} = \frac{1mA}{99 + 1} = 10\mu A$$

$$I_{C} = \alpha I_{E} = \frac{\beta}{\beta + 1} I_{E} = \frac{99}{99 + 1} 1mA = 0.99mA$$

$$V_{C} = 15 - I_{C}R_{C} = 15 - (0.99m)(5k) = 10.05V$$

$$V_{B} = 0 - I_{B}R_{B} = -(10\mu A)(100k) = -1V$$

$$Check \ V_{BE} \ (0.7V) \ and \ V_{CB} \ (reverse):$$

$$V_{E} = V_{B} - V_{BE} = (-1) - 0.7 = -1.7V$$

$$V_{CB} = V_{C} - V_{B} = 10.05 - (-1) = 11.05V$$

DC Analysis

+15V β**=99** 100kOΕ -15V

Find voltages & currents

Process:

- a) Assume ACTIVE mode operation; $V_{BE} = 0.7V$
- b) Based on assumption, calculate branch voltages and currents
- c) Verify ACTIVE mode by checking V_{CB}

DC Analysis

Edge of Active Mode

•From previous slide, found:

 $V_{C} = 15 - I_{C}R_{C} = 15 - (7.08m)R_{C}$

•In general, *increasing* R_C will not change I_C significantly •More significant consequence of *increasing* R_C is a *decrease* of V_C •If R_C is too large, *decrease* of V_C will cause BJT to leave *active* mode and transition to *saturation* mode •Recall, *active/saturation boundary* occurs for $V_C > V_B$; $V_{CB} > 0V$

Calculate Transition Point

-Use relationship for
$$V_C \& I_C$$
:
 $V_C = 15 - I_C R_C = 15 - (7.08mA)R_C$
-Use previous result for $V_B = -7.15V$,
and write expression for R_C as a
function of V_C ; solve for maximum
 R_C in order to stay in *active* mode:
 $V_C = V_B$; $15 - (7.08mA)R_C = -7.15V$

-For active mode operation:

$$R_C \leq 3.13k\Omega$$

DC Analysis Comments

- Do not know a priori that BJT is in active mode
- Use approach similar to diode CVDM analysis
 - Assume active mode operation ($V_{BE} = 0.7V$)
 - Solve circuit
 - Verify active mode operation (check V_{CB})
- Generally never use exponential model for I_C in basic DC analysis
- Generally neglect Early Voltage effect in DC analysis

pnp Transistor Biasing

Process:

- a) Assume *active* mode operation; $V_{EB} = 0.7V$
- b) Based on assumption,calculate branch voltagesand currents
- c) Verify *active* mode by checking $V_{BC} \ge 0V$

Example: Find V_B That Keeps BJT Active

At a

- As V_B decreases, I_E & I_C increase, V_C increases
- Minimum V_B condition exists while maintaining $V_{EB} = 0.7V$

• **V**_E • In active mode: $V_E - V_B = 0.7V$

$$I_{E} = \frac{10 - V_{E}}{2k}$$

$$I_{C} = \frac{V_{C}}{1k} = \alpha I_{E} = 0.99 \cdot \frac{10 - (V_{B} + 0.7)}{2k}$$

$$V_{C} = 4.6 - 0.495V_{B}$$
ctive/saturation boundary, $V_{C} = V_{B}$:
$$\boxed{V_{B} \ge 3.08V}$$

BJTs 10

- Small changes in base current result in large current changes in the collector: $I_C = \beta I_B$.
- Doubling the base current, causes the collector voltage to decrease more than 6.5 times.

Transistor Sensitivity to β

β can vary; want designs with DC conditions that are insensitive to β

Avoiding β **Sensitivity**

Find β condition to keep BJT active

$$V_E = 4.7V$$
 $I_E = \frac{10 - 4.7}{2k} = 2.65mA$

$$I_C = \alpha I_E = \frac{\beta}{\beta + 1} 2.65 mA$$

$$V_C = I_C(1k\Omega) = (2.65)\frac{\beta}{\beta+1} \quad \text{Let } \mathbf{V_C} = \mathbf{V_B} = \mathbf{4V}$$

 $V_{\rm C} \le V_{\rm B} \Rightarrow \beta \ge -2.96$ OK for any β

 Putting resistance in the emitter generally stabilizes DC biasing BJTs 13

Transistor Biasing

Thevenin Circuit for Transistor Biasing

$$R_{EQ} = R_{B1} \| R_{B2} = 33.3 k \Omega$$

AC-Signal Coupling

- Couple an input signal via a coupling capacitor:
 - C→∞ is open circuit at DC, short circuit for AC signals.
 - If R_{B1} & R_{B2} not present,
 BJT would not be DC
 biased
 - C prevents signal source from having to provide DC current
 - Completely decouples DC biasing from signal source

Two-Stage BJT DC Circuits Analysis

- Analysis approach: perform DC analysis on individual transistors.
- In this example, decouple at V_{C1} V_{B2} circuit connection
- Assume that $I_{B2} = 0$ and calculate V_{B2}
- Analyze each BJT separately
- Compare results for I_{B2} and I_{C1}
- Through iteration/simulation, can verify approximation

Q1 Analysis

sumptions: a) <i>active</i> mode, and b) <i>no</i> <i>ant</i> flowing into O2 via V node: I_{-0}
e_{RI} flowing into Q2 via v_{C1} node. $I_{B2}=0$
$V_E = -0.7V$ $I_E = \frac{-0.7 + 10}{2k} = 4.65mA$
$I_C = \alpha I_E = \frac{\beta}{\beta + 1} 4.65 mA = 4.604 mA$
$V_C = 10 - I_C(2k\Omega)$
$= 10 - (4.605 mA)(2k\Omega) = 0.79V$
$V_{E1} = \underline{-0.7V} I_{E1} = \underline{4.65mA}$
$I_{B1} = 46.5 \mu A$

$$V_{C1} = \underline{0.79V} \qquad I_{C1} = \underline{4.60mA}$$

BJTs 19

Q2 Analysis – Same Assumptions

2 assumptions: a) *active* mode, and b) *no current flowing* into Q2 via V_{C1} node: $I_{B2}=0$ $V_F = 0.79 - 0.7 = 0.09V$ $I_E = \frac{0.09 + 10}{2k} = 5.045 mA$ $I_{C} = \alpha I_{E} = \frac{\beta}{\beta + 1} 5.045 mA = 4.995 mA$ $V_C = 10 - I_C (1k\Omega)$ $=10 - (4.995 mA)(1 k\Omega) = 4.995 V$ $V_{E2} = \underline{0.09V}$ $I_{E2} = \underline{5.05mA}$ $V_{C2} = \underline{4.995V}$ $I_{C2} = \underline{4.995mA}$

BJTs 20

Compute Q2 Base Current

From previous:

$$I_{C} = \alpha I_{E} = \frac{\beta}{\beta + 1} 5.045 mA = 4.995 mA$$

$$I_B = \frac{I_C}{\beta} = \frac{4.995mA}{99} = 50.45\,\mu A$$

Iterate to Get Exact Solution; Verify On Own

DC Analysis of Active Mode BJT Circuits – Summary

- General approach to active mode DC analysis
- Collector resistance and its effect on active mode operation
- Sensitivity of BJT DC bias to variations in β , and how to avoid it
- Practical biasing arrangement for coupling AC signals
- Analysis approach to DC analysis of circuits involving multiple BJTs

Outline of Chapter 5

- 1- Introduction to The Bipolar Junction Transistor
- 2- Active Mode Operation of BJT
- 3- DC Analysis of Active Mode BJT Circuits
- <u>4- BJT as an Amplifier</u>
- 5- BJT Small Signal Models
- 6- CEA, CEA with R_E , CBA, & CCA
- 7- Integrated Circuit Amplifiers

BJT Signal Analysis

- Input has DC and AC components
- Output has DC and AC components
- Because the two are linearly superimposed, can separate DC and AC analysis as did with diode

Vcc

DC Analysis – Operating Point, I_C vs V_{BE}

- Kill AC sources
- Operating point determined by V_{BE}

BJT Signal Analysis – i_C vs v_{BE}

Consider superposition of an AC signal at the DC operating point

- Slope of i_{C} - v_{BE} curve at operating defined as BJT transconductance, g_{m}

$$i_C = I_S \exp\left(\frac{v_{BE}}{V_T}\right)$$

BJTs 27

Т

g_m Operating Point Dependence

• Since g_m represents slope at a fixed *operating point*, can derive an expression for g_m, at this operating point

McGill Department of Electrical and Computer Engineering

• Final expression for g_m indicates BJT operating point dependence based on I_C, the DC collector current.

$$g_m \equiv \frac{\partial i_C}{\partial v_{BE}} \bigg|_{i_C = I_C}$$

$$i_C = I_S \exp\left(\frac{v_{BE}}{V_T}\right)$$

BJT Small Signal – i_C vs v_{BE}

Define transconductance as slope of the $i_C - v_{BE}$ curve at an operating point:

In the *small signal* limit, can write expression for gm as follow:

$$g_m = \frac{i_c(t)}{v_{be}(t)}$$

g_m determines the BJT gain BJTs 29

Common Emitter BJT Amplifier

- Apply small signal at base: $v_s(t)=v_{be}(t)$
- Results in signal current, i_c(t), at collector
- Signal current
 through R_C
 produces output
 voltage at BJT
 collector terminal

Common Emitter BJT Voltage Gain

• Define voltage gain:

Common Emitter BJT Voltage Gain

• From SPICE:

