Section 3 The pn Junction and Diodes

Sedra/Smith, Sections 3.1-3.7

Outline of Section 3 - Diodes

- Other two terminal devices
- Diode models
- Exponential model
- Constant voltage drop model
- Reverse breakdown
- Applications
- Small-signal model
- PN junctions

Resistors, Capacitors, Inductors

- Resistor: R V=IR
- Capacitor: C $i=c \frac{d v}{d t}$
- Inductor: I

$$
v=l \frac{d i}{d t}
$$

- Devices are two terminals and do not have a required orientation.

Diode Symbol and Terminal Characteristics

Exponential Characteristic Equation

Diodes 3.5

Diodes

- It is a nonlinear device
- How to model the nonlinear behavior?
- Ideal model
- Exponential model
- Constant voltage drop model
- Piecewise-linear (we don't work with this model much, except for Zener diode)

Ideal Model

- Diode is considered to be an ideal switch
- Used for fast and approximate analysis

Ideal Model Application

- Example: Simple rectifier circuit
- We will see a more accurate analysis of this circuit later

(a)

$v_{I} \geq 0$
(c)

(d)
- Example: Logic gates

- This model is actually very useful in analysis of logic circuits and is often used

Outline of Section 3 - Diodes

- Other two terminal devices
- Diode models
- Exponential model
- Constant voltage drop model
- Reverse breakdown
- Applications
- Small-signal model
- PN junctions

I-V Characteristic of a Diode

This nonlinear i-v characteristic can be described for most of its parts with the Exponential Model

Exponential Model Definitions

Exponential Model: $i=I_{S}\left(e^{\frac{v}{n V_{T}}}-1\right)$
$\mathbf{I}_{\mathbf{S}}$: reverse saturation

- I_{s} : reverse saturation current
- proportional to cross-sectional area of current flow
- discrete Si devices:
$\mathrm{I}_{\mathrm{S}} \sim 10^{-9}-10^{-13} \mathrm{~A}$
- IC Si devices: $I_{S} \leq 10^{-15} \mathrm{~A}$
- n : fitting parameter
- normally between 1 and 2 for Si
- discrete Si devices: $\mathrm{n} \sim 2$
- IC Si devices: $\mathrm{n} \sim 1$
- $\mathbf{V}_{\mathbf{T}}$: Thermal Voltage
- from device physics:

$$
V_{T}=\frac{k \cdot T}{q}
$$

- k: Boltzmann constant ($1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$)
- T: Temperature (Kelvin)
- q: electron charge $\left(1.6 \times 10^{-19} \mathrm{C}\right)$
$-\begin{aligned} & \text { At room temperature, } \\ & \mathbf{V}_{\mathbf{T}} \sim \mathbf{2 5 ~ m V}\end{aligned}$
Diodes 3.11

Exponential Model - Forward Bias

As V increases, $\exp \left(\frac{v}{n \cdot V_{T}}\right) \gg 1$

$$
i \cong I_{S} e^{\frac{v}{n V_{T}}}
$$

- The voltage at which the diode starts to conduct appreciably is called the cut-in voltage; value is . 5 V for silicon diodes

When diode is fully conducting, V remains constant at $\sim 0.7 \mathrm{~V}$ for silicon diodes

Diodes 3.12

Forward Bias Analysis

$$
i=I_{S} e^{\frac{v}{n V_{T}}} \Longleftrightarrow v=n V_{T} \ln \left(\frac{i}{I_{S}}\right)
$$

Consider two points on I-V curve above cut-in voltage: ($\mathrm{V}_{1}, \mathrm{I}_{1}$) and $\left(V_{2}, I_{2}\right)$

$$
\begin{gathered}
\frac{I_{2}}{I_{1}}=\exp \left(\frac{V_{2}-V_{1}}{n \cdot V_{T}}\right) \\
V_{2}-V_{1}=n \cdot V_{T} \cdot \ln \left(\frac{I_{2}}{I_{1}}\right)
\end{gathered}
$$

Strong Forward Bias

- Given: a diode with $\mathrm{n}=1$ and $\mathrm{I}=1 \mathrm{~mA}$ at $\mathrm{V}=0.7 \mathrm{~V}$
- Question: determine the voltage drop across diode when the current flowing through the diode is doubled:

$$
\begin{aligned}
V_{2}-0.7 & =n \cdot V_{T} \cdot \ln \left(\frac{2 m A}{1 m A}\right) \\
V_{2}-0.7 & =(1)(25 m V) \ln (2) \\
V_{2} & =0.717 V
\end{aligned}
$$

- I-V data points for $\mathrm{n}=1$ and $\mathrm{I}_{\mathrm{S}}=6.9 \times 10^{-16} \mathrm{~A}$:

\mathbf{I}	\mathbf{V}
1 pA	0.180 V
10 pA	0.239 V
100 pA	0.297 V
1 nA	0.355 V
10 nA	0.412 V
100 nA	0.470 V
$1 \mu \mathrm{~A}$	0.527 V
$10 \mu \mathrm{~A}$	0.585 V
$100 \mu \mathrm{~A}$	0.642 V
1 mA	0.700 V
10 mA	0.758 V
100 mA	0.815 V

Note from data, above 10mA, a 10X increase in I results in only
a 57 mV
increase in V

Reverse Bias

- Recalling exponential model

$$
i=I_{S}\left(e^{\frac{v}{n V_{T}}}-1\right)
$$

- As v becomes negative,

$$
e^{\left(\frac{v}{n V_{T}}\right)} \ll 1 \quad i=-I_{S}
$$

- Exponential model predicts approximately constant current under reverse bias; IC Si devices: $\mathrm{I}_{\mathrm{S}} \sim 10^{-15}$
- Usually, consider a reverse-biased diode to be nonconductive; open circuit

Circuit Analysis

Given: $\mathrm{n}=1, \mathrm{I}_{\mathrm{S}}=6.9 \times 10^{-16} \mathrm{~A}$
Find: I and V

- For resistor: $I=\frac{5-V}{1 k}$
- For diode: $I=I_{S} \exp \left(\frac{V}{n \cdot V_{T}}\right)$

$$
I=\frac{5-V}{1 k}=6.9 \times 10^{-16} \exp \left(\frac{V}{25 m V}\right)
$$

- This is generally best for a circuit simulator to solve (like SPICE)

Iteration

$$
\mathrm{n}=1, \mathrm{I}_{\mathrm{S}}=6.9 \times 10^{-16} \mathrm{~A} \quad \text { Find } \mathrm{I} \text { and } \mathrm{V}
$$

- Iterative analysis procedure:
- Start with a guess for $\quad \mathrm{V} \approx 0.7$ is diode voltage drop
reasonable
- Use guess for V to get corresponding I

$$
I=\frac{5-V}{1 \mathrm{k}}
$$

- Use I to get better approximation for $\mathrm{V} V=(25 \mathrm{mV}) \ln \left(\frac{1}{6.9 \times 10^{-16}}\right)$
- Repeat procedure until V and I no longer change

Iteration (cont')

$$
\mathrm{n}=1, \mathrm{I}_{\mathrm{S}}=6.9 \times 10^{-16} \mathrm{~A} \quad \text { Find } \mathrm{I} \text { and } \mathrm{V}
$$

- Iteration \#1 $I=\frac{5-0.700}{1 k}=4.300 \mathrm{~mA}$

$$
(\mathrm{V}=0.7 \mathrm{~V}) \quad V=(25 \mathrm{~m}) \ln \left(\frac{4.300 \mathrm{~m}}{6.9 \times 10^{-16}}\right)=0.737 V
$$

- Iteration \#2 $I=\frac{5-0.737}{1 k}=4.263 \mathrm{~mA}$

$$
(\mathrm{V}=0.737 \mathrm{~V})_{V=(25 \mathrm{~m}) \ln \left(\frac{4.263 \mathrm{~m}}{6.9 \times 10^{-16}}\right)=0.736 \mathrm{~V}, ~}^{\text {1n }}
$$

- Iteration \#3 $\quad I=\frac{5-0.736}{1 k}=4.264 \mathrm{~mA}$

$$
(\mathrm{V}=0.736 \mathrm{~V}) \underset{V=(25 m) \ln \left(\frac{4.264 m}{6.9 \times 10^{-16}}\right)=0.736 \mathrm{~V}, ~}{1 \mathrm{k}}
$$

$$
\therefore \mathrm{I}=4.264 \mathrm{~mA}, \mathrm{~V}=0.736 \mathrm{~V}
$$

Graphical Analysis

1) Plot two relationships on the i-v plane.
2) The solution is the intersection of the two graphs; operating point

Outline of Section 3 - Diodes

- Other two terminal devices
- Diode models
- Exponential model
- Constant voltage drop model
- Reverse breakdown
- Applications
- Small-signal model
- PN junctions

The Constant Voltage Drop Model (CVDM)

- Exponential model gives accurate results; requires hand computation or a simulator
- The constant voltage drop model (CVDM) used to perform quick analysis of a diode circuit by hand
- CVDM approximates diode I-V curve piecewise-linearly

Diodes 3.21

CVDM

- "Voltage" perspective of CVDM:
$-\mathrm{V}=0.7 \mathrm{~V}$ when diode is conducting
- $\mathrm{V}<0.7 \mathrm{~V} \Rightarrow$ diode is not conducting
- "Current" perspective of CVDM:
- When $\mathrm{V}=0.7 \mathrm{~V}$, diode supplies whatever current is required by the circuit
- When $\mathrm{V}<0.7 \mathrm{~V}$, diode supplies no current

How to use CVDM to Find I and V

1) Make assumptions about whether diodes are conducting or not
2) Solve circuit:
use 0.7 V drops for conducting diodes
treat non-conducting diodes as open-circuits
3) Check validity of assumptions: If consistent \Rightarrow DONE If inconsistent \Rightarrow repeat with new assumptions

Example 1 - Find I and V

Assume that diode is conducting:

$$
V=0.7 \mathrm{~V}
$$

$$
I=\frac{5-0.7}{1 k}=4.3 \mathrm{~mA}
$$

Result indicates that diode voltage drop 0.7 V and diode current is 4.3 mA - acceptable.

Example 2 - Find $V_{1}, V_{2}, I_{D 1}$ and $I_{D 2}$

Assume that both diodes are conducting

$$
\begin{aligned}
& V_{1}=5-0.7=\underline{4.3 V} \\
& V_{2}-V_{1}=0.7 \Rightarrow \underline{V_{2}=5 V} \\
& I_{D 2}=\frac{0-V_{2}}{2 k}=\frac{-5}{2 k}=\underline{-2.5 \mathrm{~mA}}
\end{aligned}
$$

Results not consistent for D_{2}

New Assumptions

Assume that D_{1} is conducting and that D_{2} is not conducting

$$
\begin{aligned}
& V_{1}=5-0.7=\underline{4.3 \mathrm{~V}} \\
& \underline{I_{D 2}=0 \mathrm{~A}}
\end{aligned}
$$

$$
\underline{V_{2}}=0 \mathrm{~V}
$$

$$
I_{D 1}=\frac{V_{1}-0}{1 k}=\underline{4.3 m \mathrm{~A}}
$$

Results are acceptable

Example 3 - Find $V_{1}, V_{2}, I_{D 1}$ and $I_{D 2}$

Assume both D1 and D2 conducting

$$
\begin{gathered}
V_{2}=-5+0.7=\underline{-4.3 \mathrm{~V}} \\
V_{1}=V_{2}+0.7=\underline{-3.6 \mathrm{~V}} \\
I_{D 1}=\frac{5-V_{1}}{1 k}=\frac{5+3.6}{1 \mathrm{k}}=\underline{8.6 \mathrm{~mA}} \\
I_{R}=\frac{0.7}{50}=\underline{14 \mathrm{~mA}} \\
I_{D 2}=I_{D 1}-I_{R}=-5.4 \mathrm{~mA}
\end{gathered}
$$

Results not consistent for D2

New Assumptions

Assume D1 on, D2 off

$$
\begin{gathered}
I_{D 1}=I_{R}=\frac{5-V_{1}}{1 k}=\frac{V_{2}+5}{50} \\
V_{1}-V_{2}=0.7 V \\
\frac{5-\left(V_{2}+0.7\right)}{1 k}=\frac{V_{2}+5}{50} \Rightarrow V_{2}=\underline{-4.557 \mathrm{~V}} \\
V_{1}=\underline{-3.857 \mathrm{~V}} \\
I_{D 1}=\frac{5-V_{1}}{1 k}=\underline{8.857 \mathrm{~mA}}
\end{gathered}
$$

Check D2: $V_{2}+5=0.443 V<0.7 V \rightarrow D 2$ off
Results acceptable

Outline of Section 3 - Diodes

- Other two terminal devices
- Diode models
- Exponential model
- Constant voltage drop model
- Reverse breakdown
- Applications
- Small-signal model
- PN junctions

Reverse-Breakdown Region - Characteristics

- Point on I-V curve where breakdown occurs called Zener knee $\left(-\mathrm{V}_{\mathrm{ZK}},-\mathrm{I}_{\mathrm{ZK}}\right)$
- Zener diodes designed specifically for operation in reversebreakdown.
- This means that they can handle large currents, hence they are physically larger.

Reverse-Breakdown Region - Modeling

- Model for Zener diode:

- Slope of I-V curve in reverse-breakdown region very steep; r_{Z} very small
- Typical Zener application : voltage regulation

Zener Example

Question: given a Zener Diode with
$\mathrm{V}_{\mathrm{Z} 0}=5.5 \mathrm{~V}$ and an incremental resistance of $\mathrm{r}_{\mathrm{z}}=40 \Omega$, calculate the output voltage V_{O}.

Diodes 3.32

Example (cont')

1) Replace Zener with model
2) Perform circuit analysis by solving for I in the network:

$$
\begin{aligned}
V_{S}= & I R_{1}+V_{Z 0}+I r_{Z} \\
10= & I(200)+5.5+I(40) \\
& \Rightarrow I=18.75 \mathrm{~mA}
\end{aligned}
$$

3) Compute V_{0} :

$$
\begin{aligned}
V_{O}= & V_{S}-I R_{1}=10-(18.75 \mathrm{~mA})(200) \\
& \Rightarrow V_{O}=6.25 \mathrm{~V}
\end{aligned}
$$

