

ECSE-330B Electronic Circuits I

Section 3 The pn Junction and Diodes

Sedra/Smith, Sections 3.1-3.7

Outline of Section 3 - Diodes

- Other two terminal devices
- Diode models
- Exponential model
- Constant voltage drop model
- Reverse breakdown
- Applications
- Small-signal model
- PN junctions

Resistors, Capacitors, Inductors

- Resistor: R V=IR
- Capacitor: C $i = c \frac{dv}{dt}$
- Inductor: I $v = l \frac{di}{dt}$
- Devices are two terminals and do not have a required orientation.

Diode Symbol and Terminal Characteristics

Exponential Characteristic Equation

Diodes

- It is a nonlinear device
- How to model the nonlinear behavior?
 - Ideal model
 - Exponential model
 - Constant voltage drop model
 - Piecewise-linear (we don't work with this model much, except for Zener diode)

Ideal Model

- Diode is considered to be an ideal switch
 - Used for fast and approximate analysis

i 🛦

Ideal Model Application

- Example: Simple rectifier circuit
 - We will see a more accurate analysis of this circuit later

(c)

(d)

- Example: Logic gates
 - This model is actually very useful in analysis of logic circuits and is often used

Outline of Section 3 - Diodes

- Other two terminal devices
- Diode models
- Exponential model
- Constant voltage drop model
- Reverse breakdown
- Applications
- Small-signal model
- PN junctions

I-V Characteristic of a Diode

This nonlinear i-v characteristic can be described for most of its parts with the Exponential Model

Exponential Model Definitions

Exponential Model: $i = I_{S} \left(e^{\frac{v}{nV_{T}}} - 1 \right)$

- I_S: reverse saturation current
 - proportional to cross-sectional area of current flow
 - discrete Si devices: $I_s \sim 10^{-9} - 10^{-13} A$
 - IC Si devices: $I_S \le 10^{-15} \text{ A}$
- n: fitting parameter
 - normally between 1 and 2 for Si
 - discrete Si devices: n ~ 2
 - IC Si devices: $n \sim 1$

• V_T: Thermal Voltage

– from device physics:

$$V_T = \frac{k \cdot T}{q}$$

- **k: Boltzmann constant** (1.38x10⁻²³ J/K)
- **T: Temperature** (Kelvin)
- q: electron charge (1.6x10⁻¹⁹ C)
- At room temperature, $V_T \sim 25 \text{ mV}$

Exponential Model – Forward Bias

+ A0 V0

As V increases,
$$\exp\left(\frac{v}{n \cdot V_T}\right) >> 1$$

$$i \cong I_{S} e^{\frac{v}{nV_{T}}}$$

The voltage at which the diode starts to conduct appreciably is called the *cut-in voltage;* value is >>> .5V for silicon diodes

When diode is fully conducting, V remains constant at $\sim 0.7 V$ for silicon diodes 20mA 10mA

400mV

Diodes 3.12

800mV

Forward Bias Analysis

$$i = I_{S} e^{\frac{v}{nV_{T}}} \qquad v = nV_{T} \ln\left(\frac{i}{I_{S}}\right)$$
Consider two points on
I-V curve above cut-in
voltage: (V_{1}, I_{1}) and
 (V_{2}, I_{2})

$$\frac{I_{2}}{I_{1}} = \exp\left(\frac{V_{2} - V_{1}}{n \cdot V_{T}}\right)$$
 $V_{2} - V_{1} = n \cdot V_{T} \cdot \ln\left(\frac{I_{2}}{I_{1}}\right)$

$$V_{2} - V_{1} = n \cdot V_{T} \cdot \ln\left(\frac{I_{2}}{I_{1}}\right)$$

$$V_{2} - V_{1} = n \cdot V_{T} \cdot \ln\left(\frac{I_{2}}{I_{1}}\right)$$

Strong Forward Bias

- Given: a diode with n = 1and I = 1mA at V = 0.7V
- Question: determine the *voltage drop* across diode when the *current* flowing through the diode is doubled:

$$V_2 - 0.7 = n \cdot V_T \cdot \ln\left(\frac{2mA}{1mA}\right)$$
$$V_2 - 0.7 = (1)(25mV)\ln(2)$$
$$V_2 = 0.717V$$

• I-V data points for n = 1and $I_S = 6.9 \times 10^{-16} A$:

Ι	V
1pA	0.180V
10pA	0.239V
100pA	0.297V
1nA	0.355V
10nA	0.412V
100nA	0.470V
1µA	0.527V
10µA	0.585V
100µA	0.642V
1mA	0.700V
10mA	0.758V
100mA	0.815V

Note from data, above 10mA, a 10X increase in I results in only a 57mV increase in V

Reverse Bias

• Recalling exponential model

$$=I_{S}\left(e^{\frac{v}{nV_{T}}}-1\right)$$

• As *v* becomes negative,

$$e^{\left(\frac{v}{nV_T}\right)} << 1$$
 $i = -I_s$

- Exponential model predicts approximately constant current under reverse bias; IC Si devices: $I_S \sim 10^{-15}$
- Usually, consider a reverse-biased diode to be *nonconductive; open circuit*

Circuit Analysis

- Given: n = 1, $I_S = 6.9 \times 10^{-16} A$ Find: I and V
- For resistor: $I = \frac{5-V}{1k}$
- For diode: $I = I_s \exp\left(\frac{V}{n \cdot V_T}\right)$

$$I = \frac{5 - V}{1k} = 6.9 \times 10^{-16} \exp\left(\frac{V}{25mV}\right)$$

• This is generally best for a circuit simulator to solve (like SPICE)

Iteration

5V $1k\Omega$ V

 $n = 1, I_S = 6.9 \times 10^{-16} A$ Find I and V

- Iterative analysis procedure:
 - Start with a guess for diode voltage drop

$$V \approx 0.7$$
 is reasonable

- Use guess for V to get corresponding I
- $I = \frac{5 V}{1k}$
- Use I to get better approximation for V

$$V = (25mV) \ln \left(\frac{I}{6.9 \times 10^{-16}}\right)$$

 Repeat procedure until V and I no longer change

Outline of Section 3 - Diodes

- Other two terminal devices
- Diode models
- Exponential model
- <u>Constant voltage drop model</u>
- Reverse breakdown
- Applications
- Small-signal model
- PN junctions

The Constant Voltage Drop Model (CVDM)

- Exponential model gives accurate results; requires hand computation or a simulator
- The constant voltage drop model (CVDM) used to perform quick analysis of a diode circuit by hand
- CVDM approximates diode I-V curve piecewise-linearly

CVDM

- "Voltage" perspective of CVDM:
 - V = 0.7V when diode is conducting
 - − V < 0.7V \Rightarrow diode is not conducting
- "Current" perspective of CVDM:
 - When V = 0.7V, diode supplies whatever current is required by the circuit
 - When V < 0.7V, diode supplies no current

How to use CVDM to Find I and V

- 1) Make assumptions about whether diodes are *conducting or not*
- 2) Solve circuit:
 - use 0.7V drops for conducting diodes
 - treat non-conducting diodes as *open-circuits*
- 3) Check validity of assumptions:
 If consistent ⇒ DONE
 If inconsistent ⇒ repeat with new assumptions

Example 1 – Find I and V

Assume that diode is conducting:

$$V = 0.7V$$

$$I = \frac{5 - 0.7}{1k} = 4.3mA$$

Result indicates that diode voltage drop 0.7V and diode current is 4.3 mA – acceptable.

Example 2 - Find V_1 , V_2 , I_{D1} and I_{D2}

Assume that both diodes are conducting

$$V_1 = 5 - 0.7 = \underline{4.3V}$$

$$V_2 - V_1 = 0.7 \Longrightarrow \underline{V_2 = 5V}$$

$$I_{D2} = \frac{0 - V_2}{2k} = \frac{-5}{2k} = -2.5mA$$

Results *not* consistent for D_2

New Assumptions

Example 3 - Find V₁, V₂, I_{D1} and I_{D2}

5V

1kΩ

D1

50Ω

 I_R

 $\bigcirc V_1$

′-5V

New Assumptions Assume D1 on, D2 off $I_{D1} = I_R = \frac{5 - V_1}{1k} = \frac{V_2 + 5}{50}$ $V_1 - V_2 = 0.7V$ $\frac{5 - (V_2 + 0.7)}{1k} = \frac{V_2 + 5}{50} \implies V_2 = -4.557V$ $V_1 = -3.857V$ $\bigcirc V_2$ $I_{D1} = \frac{5 - V_1}{1k} = \frac{8.857 mA}{1k}$ D2 Check D2: $V_2 + 5 = 0.443V < 0.7V \rightarrow D2 \, off$ **Results** acceptable

Outline of Section 3 - Diodes

- Other two terminal devices
- Diode models
- Exponential model
- Constant voltage drop model
- <u>Reverse breakdown</u>
- Applications
- Small-signal model
- PN junctions

Reverse-Breakdown Region – Characteristics

- Point on I-V curve where breakdown occurs called *Zener* knee (-V_{ZK}, -I_{ZK})
- Zener diodes designed specifically for operation in reverse-breakdown.
- This means that they can handle large currents, hence they are physically larger.

Reverse-Breakdown Region – Modeling

- ′ Z0 rz
- Slope of I-V curve in reverse-breakdown region very steep; r_z very small

Zener Example

Question: given a Zener Diode with $V_{Z0} = 5.5V$ and an incremental resistance of $r_z=40\Omega$, calculate the output voltage V_{Ω} .

Example (cont')

 Replace Zener with model
 Perform circuit analysis by solving for I in the network:

$$V_S = IR_1 + V_{Z0} + Ir_Z$$

$$10 = I(200) + 5.5 + I(40)$$

$$\Rightarrow I = 18.75mA$$

3) Compute V_o:

$$V_O = V_S - IR_1 = 10 - (18.75mA)(200)$$

 $\Rightarrow V_O = 6.25V$

