

ECSE-330B Electronic Circuits I

Section 1 Introduction to Analog and Digital Electronics

Sedra/Smith, Sections 1.4-1.7

Introduction to Analog and Digital Electronics 1.1

Outline of Section 1

1.1 Analog Amplifiers

- Linear Amplifiers
- Transfer Characteristic
- Operating point
- Classification of ideal amplifier topologies and desirable properties
- Input/Output resistance
- Cascaded amplifier stages
- **1.2** Frequency Response of Amplifiers
- **1.3 Digital Logic Inverters**

Linear Amplifiers (1)

• Multiply amplitude of a signal by a constant scalar quantity

i.e.
$$x_o(t) = A \cdot x_i(t)$$

• Non-scalar or non-uniform amplification is called **distortion**

Linear Amplifiers (2)

- Symbol for a single-ended input linear voltage amplifier:
- Ideally provides linear voltage gain regardless of the amplitude of the input signal
- Real amplifiers have power supplies that limit the amplitude of the output

i.e.
$$\left| v_{out_{MAX}}(t) \right| \leq VDD - VSS$$

• If input is too large, output clamps ⇒ gain saturation

1.5

Transfer Characteristic(1)

• Plot of amplifier output versus amplifier input

Transfer Characteristic

• Fig 1.13 Text book: Amplifier Saturation

Transfer Characteristic (2)

• To operate amplifier in its linear region, the input must be kept small enough

Operating Point (1)

• Realistic transfer characteristic:

- Each circle represents a different DC component for the input and output signals
 - called an
 operating point
- Location of operating point has an effect on
 - input signal range
 - amplifier gain magnitude
 - amount of distortion

- Note how operating point affects:
 - voltage gain
 - output DC voltage
 - allowable
 input
 magnitude
 range

Operating Point (3)

- Input and output signal amplitude ranges
 maximized when operating point is near middle of linear region
- Derivative of transfer characteristic gives measure of amplifier gain linearity (and distortion)

Signal Convention for Course

- *DC* magnitudes in uppercase symbol and subscript
 - Example: I_D, V_D
- Incremental *signal* quantities in lowercase symbol & subscript
 - Example: $i_d(t)$, $v_d(t)$
- Total *DC* + *signal* quantities in lowercase symbol, uppercase subscript
 - Example: $i_D(t)$, $v_D(t)$

In general: $i_D(t) = I_D + i_d(t)$ $v_D(t) = V_D + v_d(t)$

Amplifier Classification

• Four types:

	Input	Output
Voltage	Voltage	Voltage
Current	Current	Current
Transconductance	Voltage	Current
Transresistance	Current	Voltage

Ideal Voltage Amplifier

Ideal Current Amplifier

Loading of the Current Amplifier

Transconductance Amplifier

- **G_{MS}** is the short-circuit transconductance
- Usually:

 $\mathbf{R}_{\mathbf{IN}}$ is large and $\mathbf{R}_{\mathbf{OUT}}$ is large

Transresistance Amplifier

- **R**_{MO} is the open-circuit transresistance gain
- Usually:

 $\mathbf{R}_{\mathbf{IN}}$ is small and $\mathbf{R}_{\mathbf{OUT}}$ is small

2-port Network

- So far the amplifier we discussed look like two port devices
- Tow port devices can be described by two port network elements such as *z* parameters, *y* parameters, *h* (hybrid parameters) and *g* (Inverse hybrid parameters)
- In EC1, we don't study the details of working with two port network parameters. Read Appendix B of your text book for more information about two port network parameters
- These parameters include a component showing reverse transmission of the signal from output to input

$$V_{1} = z_{11}I_{1} + z_{12}I_{2} \qquad I_{1} = y_{11}V_{1} + y_{12}V_{2}$$
$$V_{2} = z_{21}I_{1} + z_{22}I_{2} \qquad I_{2} = y_{21}V_{1} + y_{22}V_{2}$$

2-port Network (g-parameter)

- Real Amplifiers must also contain a Reverse-Transmission component !
- For example, a 2-port network using g-parameters

$$I_1 = g_{11}V_1 + g_{12}I_2$$
$$V_2 = g_{21}V_1 + g_{22}I_2$$

- g₁₁: input admittance
- g_{12} : reverse current gain
- g_{21} : forward voltage gain
- g₂₂: output impedance

Reverse transmission assumed negligible in EC1

Input and Output Resistance

- Methods needed to determine R_{IN} and R_{OUT} for a given black-box amplifier

Finding R_{IN}

- R_{IN} is the resistance "seen" between the input node and ground
- With input signal applied, v_{in} and i_{in} signals are established

Result is independent of amplifier class

Finding R_{OUT} - Method 1

- With input signal applied, v_{out} and i_{out} signals are established and are dependent on attached load resistance
- To get R_{OUT} for a given input:
 - remove load (open-circuit the output), determine v_{out}
 - short load (short-circuit the output), determine i_{out}

$$R_{OUT} = \frac{v_{out}|_{open-circuit}}{i_{out}|_{short-circuit}}$$

• Result is independent of amplifier class and input signal

Finding R_{OUT} - Method 2

- Alternatively, one can determine R_{OUT} as follows:
 - "Kill" the input signal (set v_{in} or i_{in} to zero)
 - Apply a test voltage signal v_x to the output node
 - Determine the current i_x it supplies to the circuit

$$R_{OUT} = \frac{v_x}{i_x}$$

• Result is independent of amplifier class (Norton's Theorem)

- Determine the relevant parameters (gain, R_{IN} , R_{OUT}) of each stage
- Overall gain analysis then becomes trivial (voltage & current dividers)

Then, by inspection...

$$A_{V} = \frac{v_{out}}{v_{IN}} = \frac{R_{L}}{R_{L} + R_{O2}} \cdot A_{VO2} \cdot \frac{R_{i2}}{R_{i2} + R_{O1}} \cdot A_{VO1} \cdot \frac{R_{i1}}{R_{i1} + R_{S}}$$

• The internal circuitry of the "Op-Amp" (or at least a version of it) will be explored by the end of EC1...

1.1 Analog Amplifiers - Summary

- Linear signal amplification and distortion
- Transfer characteristics: input and output range, gain saturation
- Effect of operating point on gain, input and output range
- Classification of ideal amplifiers
- Loading effects and ideal amplifier properties
- How to find the input and output resistance of an amplifier
- Analysis of cascaded amplifier stages

Outline of Section 1.2

- **1.1 Analog Amplifiers**
- **1.2** Frequency Response of Amplifiers
 - Measuring the response
 - Classification of Amplifiers based on frequency response
- **1.3 Digital Logic Inverters**

Measuring Frequency Response

- When a sine wave signal is applied to a linear circuit the output is a sine wave at the same frequency
- The output can have a different magnitude and experience a phase shift

- Ratio of V_0 to V_i is the amplifier gain at the test frequency
- The Transfer function of an amplifier is: $T(\omega)$

$$T(\omega) = \frac{V_o(\omega)}{V_i(\omega)}$$

Measuring Frequency Response

• The **frequency response** of an amplifier is completely known by the **magnitude (or amplitude) response** and **phase response**

$$\left|T(\omega)\right| = \frac{V_o}{V_i}$$

$$\angle T(\omega) = \phi$$

• Often the magnitude plot is given in decibels and $20\log|T(\omega)|$ is plotted versus frequency

Frequency Response

• **Amplifier Bandwidth:** The frequency range in which gain is almost constant and doesn't decrease more than (usually) 3 dB

Derivation of Frequency Response

- Find the amplifier equivalent circuit including the reactive components
- L has the impedance of $j\omega L$ and C has the impedance of $1/jC\omega$
- In many cases complex frequency variable of s is used instead of ω, → sL and 1/sC

$$T(s) = \frac{V_o(s)}{V_i(s)}$$

• Replacing s by j ω gives the response for physical frequencies: $T(j\omega)=T(\omega)$

Single-Time-Constant Networks

- Circuits with one reactive component (L or C) and one resistance
- Time constant of an STC network: $\tau = L/R$ or $\tau = CR$
- STC networks can be low-pass (LP) or high-pass (HP)

STC Network-Bode Plots

- Low-pass STC
- Log scale axis
- 3 dB frequency or Corner frequency

1.34

STC Network-Bode Plots

- High-pass STC
- Log scale axis
- 3 dB frequency or Corner frequency

Another Classification of Amplifiers

- Base on the shape of the magnitude-response of the amplifiers
- The internal device capacitances and external circuit capacitances cause a limited frequency range and the roll off in the frequency response

Another Classification of Amplifiers

- Coupling capacitors are used to connect one amplifier stage to another (few μ F)
 - At low frequencies the stages are decoupled as the impedance of the capacitor $(1/jC\omega)$ is very large
 - Resulting in zero gain at DC

A a capacitively-coupled amplifier or an ac amplifier

Another Classification of Amplifiers

- **A Tuned Amplifier** or **bandpass amplifier** or bandpass filter has a frequency response in which gain peaks around a *center frequency*
- They exist in many electronic systems such as radios, television receivers, front-end of telecommunication receivers

1.2 Frequency Response - Summary

- Transfer function or frequency response of an amplifier
- Magnitude response and phase response
- Bode plots
- Classification of amplifiers based on their frequency response