ECSE 306 - Fall 2008

Fundamentals of Signals and Systems

McGill University
Department of Electrical and Computer
Engineering

Lecture 32

November 21, 2008

Hui Qun Deng, PhD

- Realization (Block Diagram) of Difference Systems
- Unilateral z-Transform
- Inverse Unilateral z-Transform
- Solutions to Difference Equations Initially Not at Rest
H. Deng, L32_ECSE306

Transfer Function Characterization of LTI Difference Systems

Consider the Nth-order difference equation

$$
\sum_{k=0}^{N} a_{k} y[n-k]=\sum_{k=0}^{M} b_{k} x[n-k]
$$

Using the time-shifting property of the z-transform, we obtain

$$
\begin{gathered}
\sum_{k=0}^{N} a_{k} z^{-k} Y(z)=\sum_{k=0}^{M} b_{k} z^{-k} X(z) \\
\left(a_{0}+a_{1} z^{-1}+\cdots+a_{N} z^{-N}\right) Y(z)=\left(b_{0}+b_{1} z^{-1}+\cdots+b_{M} z^{-M}\right) X(z) . \\
\text { H. Deng, L32_ECSE306 }
\end{gathered}
$$

The transfer function is then given by the z-transform of the output divided by the z-transform of the input:

$$
H(z)=\frac{Y(z)}{X(z)}=\frac{\left(b_{0}+b_{1} z^{-1}+\cdots+b_{M} z^{-M}\right)}{\left(a_{0}+a_{1} z^{-1}+\cdots+a_{N} z^{-N}\right)}
$$

Hence the transfer function of an LTI difference system is always rational.

The ROC of $H(z)$ must be consistent with the ROCs of $Y(z)$ and $X(z)$. Namely, it must satisfy $R_{Y} \supset R_{X} \cap R_{H}$

Example

Consider a DLTI system defined by the difference equation:

$$
y[n]+\frac{1}{3} y[n-1]=2 x[n-1] .
$$

Taking the z-transform, we get:

$$
Y(z)+\frac{1}{3} z^{-1} Y(z)=2 z^{-1} X(z),
$$

H. Deng, L32_ECSE306
which yields the transfer function

$$
H(z)=\frac{2 z^{-1}}{1+\frac{1}{3} z^{-1}}
$$

This provides the algebraic expression for $H(z)$, but not the ROC.

As a matter of fact, there are two impulse responses that are consistent with the difference equation.

```
H. Deng, L32_ECSE306
```

A right-sided impulse response corresponds to the ROC $|z|>\frac{1}{3}$.
Using the time-shifting property, we get:

$$
h[n]=2\left(-\frac{1}{3}\right)^{n-1} u[n-1]
$$

In this case the system is causal and stable.

A left-sided impulse response corresponds to the ROC $|z|<\frac{1}{3}$.
Using the time-shifting property again, we get:

$$
h[n]=-2\left(-\frac{1}{3}\right)^{n-1} u[-n]
$$

This case leads to an unstable, anticausal system.

Block Diagrams (Realization) of $H(z)$ for Difference Systems

The transfer function of a DLTI difference system can be realized using a combination of three basic elements:
the unit delay,

the gain,

H. Deng, L32_ECSE306

Simple First-Order Transfer Function

Consider the transfer function $H(z)=\frac{1}{1-a z^{-1}}$, which corresponds to the first-order difference equation

$$
\begin{aligned}
& y[n]-a y[n-1]=x[n] \\
& y[n]=a y[n-1]+x[n]
\end{aligned}
$$

H. Deng, L32_ECSE306

Simple Second-Order Transfer Function

Consider the transfer function $H(z)=\frac{1}{1+a_{1} z^{-1}+a_{2} z^{-2}}$.
The transfer function can be realized as a sum of two first-order transfer functions (partial fraction expansion): the parallel form, which is a parallel interconnection of the two first-order transfer functions.

Another way is to break up the transfer function as a cascade (multiplication) of two first-order transfer functions.

Yet another way to realize the second-order transfer function is the so-called direct form or controllable canonical form. To develop this form, consider the system equation

$$
\begin{aligned}
& Y(z)=-a_{1} z^{-1} Y(z)-a_{2} z^{-2} Y(z)+X(z) . \\
& \text { H. Deng, L32_ECSE306 }
\end{aligned}
$$

$$
Y(z)=-a_{1} z^{-1} Y(z)-a_{2} z^{-2} Y(z)+X(z) .
$$

This equation can be realized as follows with two unit delays:

H. Deng, L32_ECSE306

Direct Form (Controllable Canonical Form)

A direct form can be obtained by breaking up a general transfer function into two subsystems as follows:

$$
H(z)=\frac{Y(z)}{X(z)}=\frac{\left(b_{0}+b_{1} z^{-1}+\cdots+b_{M} z^{-M}\right)}{\left(a_{0}+a_{1} z^{-1}+\cdots+a_{N} z^{-N}\right)}
$$

Assume without loss of generality that $a_{0}=1$.

All-pole system
All-zero system
H. Deng, L32_ECSE306

The input-output system equation of the first subsystem is

$$
W(z)=-a_{1} z^{-1} W(z)-\cdots-a_{N-1} z^{-N+1} W(z)-a_{N} z^{-N} W(z)+X(z)
$$

and for the second subsystem we have

$$
Y(z)=b_{0} W(z)+b_{1} z^{-1} W(z)+\cdots+b_{M-1} z^{-M+1} W(z)+b_{M} z^{-M} W(z) .
$$

H. Deng, L32_ECSE306

The direct form realization is then (for a second-order system):

H. Deng, L32_ECSE306

The Unilateral z-Transform

The unilateral z-transform is defined for the causal part of discrete-time signals.

$$
\mathcal{X}(z):=\sum_{n=0}^{+\infty} x[n] z^{-n},
$$

The signal/transform pair is denoted as

$$
\underset{x[n]}{\stackrel{U z}{\leftrightarrow}} \mathcal{X}(z)=\mathcal{U Z}\{x[n]\}
$$

The series only has negative powers of z since the summation runs over nonnegative times.

One implication is that

$$
\boldsymbol{U} \mathcal{Z}\{x[n]\}=\boldsymbol{U} \mathcal{Z}\{x[n] u[n]\}
$$

Another implication is that the ROC of a unilateral z-transform is always the exterior of a circle.
H. Deng, L32_ECSE306

Example

Consider the signal

$$
x[n]=a^{n+1} u[n+1]
$$

The bilateral z-transform of $x[n]$ is obtained by using the time-shifting property:

$$
X(z)=\frac{z}{1-a z^{-1}}=\frac{z^{2}}{z-a}, \quad|z|>a
$$

H. Deng, L32_ECSE306

The unilateral z-transform of $x[n]$ is computed as:

$$
\begin{aligned}
X(z) & =\sum_{n=0}^{+\infty} a^{n+1} z^{-n} \\
& =\frac{a}{1-a z^{-1}}, \quad|z|>a
\end{aligned}
$$

The bilateral and unilateral z-transforms are different for non-causal signals.
H. Deng, L32_ECSE306

Inverse Unilateral z-Transform

The inverse unilateral z-transform can be obtained by

- performing a partial fraction expansion,
- selecting all the ROCs of the individual first-order fractions to be exteriors of disks.
H. Deng, L32_ECSE306

Long division can be used as well. The series must be in negative powers of z.

Example

The unilateral z-transform

$$
x(z)=\frac{1}{1-a z^{-1}}, \quad|z|>a
$$

can be expanded in the power series
$1 - a z ^ { - 1 } \longdiv { 1 + a z ^ { - 1 } + a ^ { 2 } z ^ { - 2 } + \ldots }$

$$
\frac{1-a z^{-1}}{a z^{-1}}
$$

H. Deng, L32_ECSE306 $\frac{a z^{-1}-a^{2} z^{-2}}{a^{2} z^{-2}}$

Note that the resulting power series converges because the ROC implies $\left|a z^{-1}\right|<1$.

Here, we can see that the signal is

$$
x[n]=a^{n} u[n] .
$$

Properties of the Unilateral z-Transform that Differ from Properties of the Bilateral z-Transform

Consider the pair $x[n] \stackrel{u z}{\leftrightarrow} X(z)$.
Time Delay

$$
\underset{x[n-1] \stackrel{u z}{\leftrightarrow}}{z^{-1}} \boldsymbol{X}(z)+x[-1]
$$

H. Deng, L32_ECSE306

Time advance

Time Advance

$$
x[n+1] \stackrel{u z}{\leftrightarrow} z X(z)-z x[0]
$$

H. Deng, L32_ECSE306

Convolution

For causal signals $x_{1}[n] \stackrel{u z}{\leftrightarrow} X_{1}(z)$ and $x_{2}[n] \stackrel{u z}{\leftrightarrow} X_{2}(z)$, we have the familiar result:
$x_{1}[n] * x_{2}[n] \stackrel{u z}{\leftrightarrow} X_{1}(z) X_{2}(z)$
H. Deng, L32_ECSE306

Note that the resulting signal will also be causal since

$$
\begin{aligned}
y[n] & =x_{1}[n] * x_{2}[n] \\
& =\sum_{m=-\infty}^{+\infty} x_{1}[m] x_{2}[n-m] \\
& =\sum_{m=-\infty}^{+\infty} x_{1}[m] u[m] x_{2}[n-m] u[n-m] \\
& =\sum_{m=0}^{n} x_{1}[m] x_{2}[n-m]
\end{aligned}
$$

and the last summation is 0 for $n<0$.
H. Deng, L32_ECSE306

Solution to Difference Equations Initially NOT at Rest

Recall Ch3, we solved difference equations initially at rest. Now, using unilateral z-transform, you can solve difference equations initially NOT at rest, i.e., $y[-1], y[-2], y[-3], \ldots$, are not zero.
The time delay property can be used recursively to show that

$$
x[n-m] \leftrightarrow z^{u z} \mathcal{X}(z)+z^{-m+1} x[-1]+\cdots+z^{-1} x[-m+1]+x[-m]
$$

Thus, we can solve a difference system with initial conditions by using the unilateral z-transform.
H. Deng, L32_ECSE306

Example

Consider the causal difference equation:

$$
y[n]-0.8 y[n-1]=2 x[n]
$$

where the input signal is $x[n]=(0.5)^{n} u[n]$, and the initial condition is $y[-1]=y_{-1}$.

Unilateral z-transform:

$$
\begin{aligned}
& \mathscr{Y}(z)-0.8 z^{-1} \mathscr{Y}(z)-0.8 y[-1]=2 \mathcal{X}(z) \\
& \left(1-0.8 z^{-1}\right) \boldsymbol{Y}(z)-0.8 y_{-1}=\frac{2}{1-0.5 z^{-1}}
\end{aligned}
$$

H. Deng, L32_ECSE306
which yields

$$
\mathscr{Y}(z)=\frac{0.8 y_{-1}}{\left(1-0.8 z^{-1}\right)}+\frac{2}{\left(1-0.8 z^{-1}\right)\left(1-0.5 z^{-1}\right)},|z|>0.8
$$

The first term on the right-hand side is the zero-input response.

The second term on the right-hand side is the zero-state response.

The zero-state response

Expand the zero-state response in partial fractions:

$$
\frac{2}{\left(1-0.8 z^{-1}\right)\left(1-0.5 z^{-1}\right)}=\frac{1.23}{1-0.8 z^{-1}}+\frac{0.77}{1-0.5 z^{-1}} .
$$

Finally, the unilateral z-transform of the system is given by:

$$
\mathscr{Y}(z)=\underbrace{\frac{0.8 y_{-1}+1.23}{1-0.8 z^{-1}}}_{|z|>0.8}+\underbrace{\frac{0.77}{1-0.5 z^{-1}}}_{|z|>0.5},
$$

and its corresponding time-domain signal is:

$$
\begin{aligned}
& y[n]=\left(0.8 y_{-1}+1.23\right)(0.8)^{n} u[n]+0.77(0.5)^{n} u[n] \\
& \text { H. Deng, L32_ECSE306 }
\end{aligned}
$$

