Fundamentals of Signals and Systems

McGill University
Department of Electrical and Computer
Engineering

Lecture 30

November 17, 2008
Hui Qun Deng, PhD
z-transform
ROC of the z-transform
Properties of z-transform

Two-sided z-transform

The response of a DLTI system to a complex exponential input Z^{n} is the same complex exponential with only a change in (complex) amplitude: $z^{n} \rightarrow H(z) z^{n}$. The complex amplitude factor is in general a function of the complex variable z .

$$
\begin{aligned}
y[n] & =\sum_{k=-\infty}^{+\infty} h[k] x[n-k]=\sum_{k=-\infty}^{+\infty} h[k] z^{n-k} \\
& =z^{n} \sum_{k=-\infty}^{+\infty} h[k] z^{-k} \\
& =H(z) z^{n}
\end{aligned}
$$

Recall Lecture 10 that z^{n} is an eigenfunction of DT LTI system.

The system's response has the form $y[n]=H(z) z^{n}$, where

$$
H(z)=\sum_{n=-\infty}^{+\infty} h[n] z^{-n}
$$

The function $H(z)$ is the z-transform of the impulse response of the system. The z-transform is also defined for a general DT signal $x[n]$:

$$
X(z):=\sum_{n=-\infty}^{+\infty} x[n] z^{-n} .
$$

The region of convergence of the ztransform

Writing $Z=r e^{j \omega}$, we analyze the region of z where the Z transform converge.

$$
\left.X(z)\right|_{z=r e^{j \omega}}=\sum_{n=-\infty}^{\infty} x[n] r^{-n} e^{-j \omega n}=\mathcal{F}\left\{X[n] r^{-n}\right\}
$$

The ROC is the region of the z-plane ($z=r e^{j \omega}$) where the signal $x[n] r^{-n}$ has a DTFT, i.e., $x[n] r^{-n}$ is absolutely
summable, i.e., $\sum_{k=-\infty}^{+\infty} \mid x[k] r^{-k}<\infty$.

Relationship between Z transform and Fourier transform
Note that the DTFT is a special case of the z-transform:

$$
X\left(e^{j \omega}\right)=\left.X(z)\right|_{z=e^{j \omega}}=\sum_{n=-\infty}^{+\infty} x[n] e^{-j \omega n}
$$

The DTFT is simply $X(z)$ evaluated on the unit circle in the z -plane.
H. Deng, L30_ECSE306

Example of z-transform

Consider the signal $x[n]=a^{n} u[n]$. Then,

$$
X(z)=\sum_{n=0}^{+\infty} a^{n} z^{-n}=\sum_{n=0}^{+\infty}\left(a z^{-1}\right)^{n}
$$

We need to specify the region of convergence (ROC) where the above sum is finite.

In this case, ROC is the range of z for which $\left|a z^{-1}\right|<1$, or equivalently $|z|>|a|$. Then

$$
X(z)=\sum_{n=0}^{+\infty}\left(a z^{-1}\right)^{n}=\frac{1}{1-a z^{-1}}=\frac{z}{z-a}, \quad|z|>|a| .
$$

The z-transform of unit step signal

The unit step signal $x[n]=u[n]$ has the z-transform

$$
X(z)=\frac{1}{1-z^{-1}}=\frac{z}{z-1}, \quad|z|>1
$$

Example

Determine the Z transform of the signal

$$
x[n]=\left(\frac{1}{3}\right)^{n} u[n]+2\left(\frac{1}{2}\right)^{n} u[-n-1]
$$

Solution: $\quad X(z)=\sum_{n=-\infty}^{+\infty}\left[\left(\frac{1}{3}\right)^{n} u[n]+2\left(\frac{1}{2}\right)^{n} u[-n-1]\right] z^{-n}$

$$
=\sum_{n=0}^{+\infty}\left(\frac{1}{3}\right)^{n} z^{-n}+2 \sum_{n=-\infty}^{-1}\left(\frac{1}{2}\right)^{n} z^{-n}=\underbrace{\frac{1}{1-\frac{1}{3} z^{-1}}}_{|z|>\frac{1}{3}}+\frac{4 z}{\underbrace{1-2 z}_{|z|<\frac{1}{2}}}
$$

$$
=\frac{2 z\left(z-\frac{1}{6}\right)}{\left(z-\frac{1}{3}\right)(1-2 z)}, \frac{1}{3}<|z|<\frac{1}{2}
$$

The ROC of $X(z)$ can be displayed on a pole-zero plot as follows:

Properties of ROC

Property 1: The ROC of $x(z)$ consists of a ring in the z-plane centered around the origin.

Convergence is dependent only on r , not on ω. Hence, if $X(z)$ exists at the point $Z_{0}=r_{0} e^{j \omega_{0}}$, then it also converges on the circle $Z=r_{0} e^{j \omega}, 0 \leq \omega \leq 2 \pi$.

Property 2: The ROC of $X(z)$ does not contain any poles.

This one is obvious.
Property 3: If $x[n]$ is of finite duration, then the ROC is the entire z-plane, except possibly $z=0$ and/or $z=\infty$.

In this case, the finite sum of the z-transform converges for (almost) all z. Two exceptions are $z=0$ and $z=\infty$ in

$$
X(z)=\sum_{n=-N_{1}}^{N_{2}} x[n] z^{-n}
$$

Property 4

If $x[n]$ is right-sided, and if the circle $|z|=r_{0}$ is in the ROC, then all finite values of z for which $|z|>r_{0}$ will also be in the ROC.

This is because if the signal $x[n] r_{0}{ }^{-n}$ is absolutely summable, then, for $r_{1}>r_{0}$, we have $|x[n]| r_{1}^{-n}<|x[n]| r_{0}^{-n}$ for $n \geq 0$, and $\sum_{n=-N_{1}}^{-1}|x[n]| r_{1}^{-n}<\infty$ in case the right-sided signal begins at negative time $-N_{1}$.

Properties of the Two-Sided z-Transform

We use the notation $x[n] \stackrel{z}{\leftrightarrow} X(z)$ to represent a z-transform pair.

Linearity

The operation of calculating the z-transform of a signal is linear.
For $\quad x[n] \stackrel{z}{\leftrightarrow} X(z), R O C=R_{x}, \quad y[n] \stackrel{z}{\leftrightarrow} Y(z), R O C=R_{y}, \quad$ let $z[n]=A x[n]+B y[n]$, then

$$
z[n] \stackrel{z}{\leftrightarrow} A X(z)+B Y(z), \quad R O C \supset R_{x} \cap R_{y} .
$$

Time Shifting

Time shifting leads to a multiplication by a complex exponential.
$x\left[n-n_{0}\right] \stackrel{z}{\leftrightarrow} Z^{-n_{0}} X(z)$,
$R O C=R_{x}$,
except possible addition/deletion of 0 or ∞
Example:
$2^{n} u[n] \leftrightarrow \frac{1}{1-2 z^{-1}},\{z \in$ Complex, $|z|>2\}$
$2^{n+2} u[n+2] \leftrightarrow \frac{z^{2}}{1-2 z^{-1}},\{z \in$ Complex, $|z|>2\} \operatorname{not}\{\infty\}$

Scaling in the z-Domain

$$
z_{0}{ }^{n} x[n] \stackrel{z}{\leftrightarrow} X\left(\frac{z}{z_{0}}\right), \quad R O C=\left|z_{0}\right| R_{x}
$$

where the ROC is the scaled version of R_{x}.
if $X(z)$ has a pole or zero at $Z=a$, then $X\left(z / z_{0}\right)$ has a pole or zero at $z=z_{0} a$.

Recall the frequency shifting property of Fourier transform (Lecture 28).
H. Deng, L30_ECSE306

Time Reversal

$$
x[-n] \stackrel{z}{\leftrightarrow} X\left(z^{-1}\right), \quad R O C=1 / R_{x} .
$$

That is, if $Z \in R_{x}$, then $\frac{1}{Z} \in R O C$.

Time Expansion (upsampling)

The upsampled signal

$$
x_{(m)}[n]=\left\{\begin{array}{c}
x[n / m], \quad n / m=\text { integer } \\
0, \quad \text { otherwise }
\end{array}\right.
$$

has a z-transform given by:

$$
x_{(m)}[n] \stackrel{z}{\leftrightarrow} X\left(z^{m}\right), \quad R O C=R_{x}^{1 / m}
$$

Differentiation in the z-Domain

Differentiation of the z-transform with respect to Z yields

$$
n x[n] \stackrel{z}{\leftrightarrow}-z \frac{d X(z)}{d z}, \quad R O C=R_{x}
$$

Example:
$u[n] \stackrel{z}{\leftrightarrow} \frac{Z}{Z-1},|z|>1$
$n u[n] \stackrel{z}{\leftrightarrow}-z\left[\frac{(z-1)-z}{(z-1)^{2}}\right]=\frac{z}{(z-1)^{2}},|z|>1$

Convolution of two signals

The convolution of $x[n]$ and $y[n]$ has a resulting z transform given by

$$
x[n] * y[n]=\sum_{m=-\infty}^{\infty} x[m] y[n-m] \stackrel{z}{\leftrightarrow} X(z) Y(z), \quad R O C \supset R_{x} \cap R_{y} .
$$

Remark:
The ROC can be larger than $R_{x} \cap R_{y}$ if pole-zero cancellations occur when forming the product $X(z) Y(z)$.

First Difference

The first difference of a signal has the following z-transform:
$x[n]-x[n-1] \stackrel{z}{\leftrightarrow}\left(1-z^{-1}\right) X(z), \quad R O C=R_{x}$,
with the possible deletion of $z=0$ from the ROC, and/or addition of $z=1$.

Running Sum (accumulation)

The running sum of a signal is the inverse of the first difference.

$$
\sum_{m=-\infty}^{n} x[m] \stackrel{z}{\leftrightarrow} \frac{1}{\left(1-z^{-1}\right)} X(z), \quad R O C \supset R_{x} \cap\{z \in \square:|z|>1\}
$$

Conjugation

$$
x^{*}[n] \stackrel{z}{\leftrightarrow} X^{*}\left(z^{*}\right), \quad R O C=R_{x}
$$

Remark:
For $x[n]$ real, we have: $X(z)=X^{*}\left(z^{*}\right)$. Thus if $X(z)$ has a pole (or zero) at $Z=a$, then it must also have a pole (or zero) at $Z=a^{*}$.

That is, all complex poles and zeros come in conjugate pairs in the z-transform of a real signal.

Initial-Value Theorem

If $x[n]$ is a causal signal, i.e., $x[n]=0, n<0$, we have

$$
x[0]=\lim _{z \rightarrow \infty} X(z)
$$

This property follows from the power series representation of $X(z)$:
$\lim _{z \rightarrow \infty} X(z)=\lim _{z \rightarrow \infty}\left[x[0]+x[1] z^{-1}+x[2] z^{-2}+\ldots\right]=x[0]$

$$
x[0]=\lim _{z \rightarrow \infty} X(z) .
$$

Consequence:

With $X(z)$ expressed as a ratio of polynomials, the order of its numerator cannot be greater than the order of its denominator (for $x[n]$ causal with x [0] finite.)

Final-Value Theorem

If $x[n]$ is a causal signal, we have

$$
\lim _{n \rightarrow \infty} x[n]=\lim _{z \rightarrow 1}\left(1-z^{-1}\right) X(z)
$$

This formula gives us the residue at the pole $Z=1$ (which corresponds to DC).
If this residue is nonzero, then $X(z)$ has a nonzero final value.

