

ECSE 306 - Fall 2008 Fundamentals of Signals and Systems

McGill University Department of Electrical and Computer Engineering

Lecture 30

November 17, 2008

Hui Qun Deng, PhD

z-transform ROC of the z-transform Properties of z-transform

Two-sided z-transform

The response of a DLTI system to a *complex exponential* input z^n is the same complex exponential with only a change in (complex) amplitude: $z^n \rightarrow H(z)z^n$. The complex amplitude factor is in general a function of the complex variable z.

$$y[n] = \sum_{k=-\infty}^{+\infty} h[k] x[n-k] = \sum_{k=-\infty}^{+\infty} h[k] z^{n-k}$$
$$= z^n \sum_{k=-\infty}^{+\infty} h[k] z^{-k}$$
$$= H(z) z^n$$

Recall Lecture 10 that z^n is an eigenfunction of DT LTI system. H. Deng, L30_ECSE306 The system's response has the form $y[n] = H(z)z^n$, where

$$H(z) = \sum_{n=-\infty}^{+\infty} h[n] z^{-n} ,$$

The function H(z) is the *z*-transform of the impulse response of the system. The *z*-transform is also defined for a general DT signal x[n]:

$$X(z) := \sum_{n=-\infty}^{+\infty} x[n] z^{-n} .$$

The region of convergence of the ztransform

Writing $z = re^{j\omega}$, we analyze the region of z where the Z transform converge.

$$X(z)\Big|_{z=re^{j\omega}} = \sum_{n=-\infty}^{\infty} x[n]r^{-n}e^{-j\omega n} = \mathcal{F}\{x[n]r^{-n}\}$$

The ROC is the region of the *z*-plane ($z = re^{j\omega}$) where the signal $x[n]r^{-n}$ has a DTFT, i.e., $x[n]r^{-n}$ is absolutely summable, i.e., $\sum_{k=-\infty}^{+\infty} |x[k]|r^{-k} < \infty$.

Relationship between Z transform and Fourier transform

Note that the DTFT is a special case of the z-transform:

$$X(e^{j\omega}) = X(z)\Big|_{z=e^{j\omega}} = \sum_{n=-\infty}^{+\infty} x[n]e^{-j\omega n}$$

The DTFT is simply X(z) evaluated on the unit circle in the z-plane.

H. Deng, L30_ECSE306

Example of z-transform

Consider the signal $x[n] = a^n u[n]$. Then,

$$X(z) = \sum_{n=0}^{+\infty} a^n z^{-n} = \sum_{n=0}^{+\infty} (az^{-1})^n$$

We need to specify the region of convergence (ROC) where the above sum is finite.

In this case, ROC is the range of z for which $|az^{-1}| < 1$, or equivalently |z| > |a|. Then

$$X(z) = \sum_{n=0}^{+\infty} (az^{-1})^n = \frac{1}{1 - az^{-1}} = \frac{z}{z - a}, \quad |z| > |a|.$$

The z-transform of unit step signal

The unit step signal x[n] = u[n] has the *z*-transform

$$X(z) = \frac{1}{1 - z^{-1}} = \frac{z}{z - 1}, \quad |z| > 1.$$

Example

Determine the Z transform of the signal

$$x[n] = \left(\frac{1}{3}\right)^n u[n] + 2\left(\frac{1}{2}\right)^n u[-n-1]$$

Solution:

$$X(z) = \sum_{n=-\infty}^{+\infty} \left[\left(\frac{1}{3}\right)^n u[n] + 2\left(\frac{1}{2}\right)^n u[-n-1] \right] z^{-n}$$
$$= \sum_{n=0}^{+\infty} \left(\frac{1}{3}\right)^n z^{-n} + 2\sum_{n=-\infty}^{-1} \left(\frac{1}{2}\right)^n z^{-n} = \frac{1}{1 - \frac{1}{3}z^{-1}} + \frac{4z}{1 - 2z}$$
$$\underbrace{\frac{1}{|z| < \frac{1}{3}}}_{|z| > \frac{1}{3}} + \underbrace{\frac{1 - 2z}{|z| < \frac{1}{2}}}_{|z| < \frac{1}{2}}$$

H. Deng, L30_ECSE306

The ROC of X(z) can be displayed on a pole-zero plot as follows:

Properties of ROC

Property 1: The ROC of x(z) consists of a ring in the z-plane centered around the origin.

Convergence is dependent only on r, not on ω . Hence, if X(z)exists at the point $z_0 = r_0 e^{j\omega_0}$, then it also converges on the circle $z = r_0 e^{j\omega}, 0 \le \omega \le 2\pi$. Im{z} ROC _0_ 1/6 1/3 1/2 Re{z} 10 H. Deng, L30_ECSE306

Property 2: The ROC of X(z) does not contain any poles.

This one is obvious.

Property 3: If x[n] is of finite duration, then the ROC is the entire *z*-plane, except possibly z = 0 and/or $z = \infty$.

In this case, the finite sum of the *z*-transform converges for (almost) all *z*. Two exceptions are z = 0 and $z = \infty$ in

$$X(z) = \sum_{n=-N_1}^{N_2} x[n] z^{-n}$$

Property 4

If x[n] is right-sided, and if the circle $|z| = r_0$ is in the ROC, then all finite values of z for which $|z| > r_0$ will also be in the ROC.

This is because if the signal $x[n]r_0^{-n}$ is absolutely summable, then, for $r_1 > r_0$, we have $|x[n]|r_1^{-n} < |x[n]|r_0^{-n}$ for $n \ge 0$, and $\sum_{n=-N_1}^{-1} |x[n]|r_1^{-n} < \infty$ in case the right-sided signal begins at negative time $-N_1$.

Properties of the Two-Sided z-Transform

We use the notation $x[n] \stackrel{z}{\leftrightarrow} X(z)$ to represent a *z*-transform pair.

Linearity

The operation of calculating the *z*-transform of a signal is linear.

For $x[n] \stackrel{z}{\leftrightarrow} X(z)$, $ROC = R_x$, $y[n] \stackrel{z}{\leftrightarrow} Y(z)$, $ROC = R_y$, let z[n] = Ax[n] + By[n], then

$$z[n] \stackrel{z}{\longleftrightarrow} AX(z) + BY(z), \ ROC \supset R_x \cap R_y.$$

Time Shifting

Time shifting leads to a multiplication by a complex exponential.

$$x[n-n_0] \stackrel{z}{\longleftrightarrow} z^{-n_0} X(z),$$

 $ROC = R_x$,

except possible addition/deletion of 0 or ∞

Example:

$$2^{n}u[n] \leftrightarrow \frac{1}{1-2z^{-1}}, \{z \in Complex, |z| > 2\}$$
$$2^{n+2}u[n+2] \leftrightarrow \frac{z^{2}}{1-2z^{-1}}, \{z \in Complex, |z| > 2\}not\{\infty\}$$

Scaling in the z-Domain

$$z_0^n x[n] \stackrel{z}{\longleftrightarrow} X\left(\frac{z}{z_0}\right), \quad ROC = |z_0| R_x,$$

where the ROC is the scaled version of R_x .

if X(z) has a pole or zero at z = a, then $X(z/z_0)$ has a pole or zero at $z = z_0 a$.

Recall the frequency shifting property of Fourier transform (Lecture 28). H. Deng, L30_ECSE306

Time Reversal

$$x[-n] \stackrel{z}{\leftrightarrow} X(z^{-1}), \ ROC = 1/R_x.$$

That is, if $z \in R_x$, then $\frac{1}{z} \in ROC$.

Time Expansion (upsampling)

The upsampled signal

$$x_{(m)}[n] = \begin{cases} x[n/m], & n/m = \text{integer} \\ 0, & otherwise \end{cases}$$

has a *z*-transform given by:

$$x_{(m)}[n] \stackrel{z}{\longleftrightarrow} X(z^m), \ ROC = R_x^{1/m}.$$

Differentiation in the z-Domain

Differentiation of the *z*-transform with respect to z yields

$$nx[n] \stackrel{z}{\longleftrightarrow} - z \frac{dX(z)}{dz}, \ ROC = R_x.$$

Example:

$$u[n] \stackrel{z}{\longleftrightarrow} \frac{z}{z-1}, \ |z| > 1$$
$$nu[n] \stackrel{z}{\longleftrightarrow} - z \left[\frac{(z-1)-z}{(z-1)^2} \right] = \frac{z}{(z-1)^2}, \ |z| > 1$$

Convolution of two signals

The convolution of x[n] and y[n] has a resulting *z*-transform given by

$$x[n] * y[n] = \sum_{m=-\infty}^{\infty} x[m] y[n-m] \stackrel{z}{\longleftrightarrow} X(z) Y(z), \ ROC \supset R_x \cap R_y$$

Remark:

The ROC can be larger than $R_x \cap R_y$ if pole-zero cancellations occur when forming the product X(z)Y(z).

First Difference

The first difference of a signal has the following *z*-transform:

$$x[n] - x[n-1] \stackrel{z}{\longleftrightarrow} (1-z^{-1}) X(z), \ ROC = R_x$$
,

with the possible deletion of z = 0 from the ROC, and/or addition of z = 1.

Running Sum (accumulation)

The running sum of a signal is the inverse of the first difference.

$$\sum_{m=-\infty}^{n} x[m] \stackrel{z}{\longleftrightarrow} \frac{1}{(1-z^{-1})} X(z), \quad ROC \supset R_{x} \cap \{z \in \Box : |z| > 1\}$$

Conjugation

$$x^*[n] \stackrel{z}{\longleftrightarrow} X^*(z^*), \ ROC = R_x$$

Remark:

For x[n] real, we have: $X(z) = X^*(z^*)$. Thus if X(z) has a pole (or zero) at z = a, then it must also have a pole (or zero) at $z = a^*$.

That is, all complex poles and zeros come in conjugate pairs in the *z*-transform of a real signal.

Initial-Value Theorem

If x[n] is a causal signal, i.e., x[n] = 0, n < 0, we have

$$x[0] = \lim_{z \to \infty} X(z)$$

This property follows from the power series representation of X(z):

$$\lim_{z \to \infty} X(z) = \lim_{z \to \infty} [x[0] + x[1]z^{-1} + x[2]z^{-2} + \dots] = x[0]$$

 $x[0] = \lim X(z)$. $7 \rightarrow \infty$

Consequence:

With X(z) expressed as a ratio of polynomials, the order of its numerator cannot be greater than the order of its denominator (for x[n] causal with x[0] finite.)

Final-Value Theorem

If x[n] is a causal signal, we have

$$\lim_{n \to \infty} x[n] = \lim_{z \to 1} (1 - z^{-1}) X(z)$$

This formula gives us the residue at the pole z = 1 (which corresponds to DC).

If this residue is nonzero, then X(z) has a nonzero final value.