ECSE 306 - Fall 2008

Fundamentals of Signals and Systems

McGill University Department of Electrical and Computer

Engineering

Lecture 28

November 12
Hui Qun Deng
Properties of DT Fourier Transform

Linearity

The operation of calculating the DTFT of a signal is linear:
If $\quad x[n] \stackrel{\mathcal{F}}{\leftrightarrow} X\left(e^{j \omega}\right), y[n] \stackrel{\mathcal{F}}{\leftrightarrow} X\left(e^{j \omega}\right)$,
and if $\quad z[n]=A x[n]+B y[n]$,
then $z[n] \stackrel{\mathcal{F}}{\leftrightarrow} A X\left(e^{j \omega}\right)+B Y\left(e^{j \omega}\right)$.

Time shifting and frequency shifting

Time Shifting

Time shifting leads to a multiplication by a complex exponential.

$$
x\left[n-n_{0}\right] \stackrel{\mathcal{F}}{\leftrightarrow} e^{-j \omega n_{0}} X\left(e^{j \omega}\right) .
$$

Remark: Only the phase of the DTFT is changed.
Frequency Shifting
Frequency shifting leads to a multiplication of $x[n]$ by a complex exponential.

$$
e^{j \omega_{0} n} x[n] \stackrel{\mathcal{F}}{\leftrightarrow} X\left(e^{j\left(\omega-\omega_{0}\right)}\right) .
$$

Time reversal

Time reversal corresponds to the frequency reversal of the DTFT:

$$
\begin{aligned}
& x[-n] \stackrel{\mathcal{F}}{\leftrightarrow} X\left(e^{-j \omega}\right) . \\
& \sum_{n=-\infty}^{+\infty} x[-n] e^{-j \omega n}=\sum_{m=-\infty}^{\infty} x[m] e^{j \omega m}=X\left(e^{-j \omega}\right) .
\end{aligned}
$$

Note:

- For $x[n]$ even, $X\left(e^{j \omega}\right)$ is also even, for $x[n]$ odd, $X\left(e^{j \omega}\right)$ is also odd

Time scaling

Upsampling (time expansion)
The signal $\quad x_{(m)}[n]:=\left\{\begin{array}{rc}x[n / m], & n=0, m, 2 m, 3 m, \ldots . . \\ 0, & \text { otherwise }\end{array}\right.$
is an upsampled version of the original signal $x[n]$. The upsampling operation inserts m-1 zeros between consecutive samples of the original signal. Spectrum is compressed around DC:

$$
x_{(m)}[n] \stackrel{\mathcal{F}}{\leftrightarrow} X\left(e^{j m \omega}\right) .
$$

Down Sampling

Downsampling (decimation)
The signal $x[m n]$ is called a decimated or downsampled version of $x[n]$, that is, only every $m^{\text {th }}$ sample of $x[n]$ is retained.
Since aliasing may occur, we will postpone this analysis

Differentiation in frequency

Differentiation in Frequency
Differentiation of the DTFT with respect to frequency yields

$$
n x[n] \stackrel{\mathcal{F}}{\leftrightarrow} j \frac{d X\left(e^{j \omega}\right)}{d \omega}
$$

Convolution in time domain

Convolution of Two Signals

For $x[n] \stackrel{\mathcal{F}}{\leftrightarrow} X\left(e^{j \omega}\right), y[n] \stackrel{\mathcal{F}}{\leftrightarrow} Y\left(e^{j \omega}\right)$, we have

$$
\sum_{m=-\infty}^{\infty} x[m] y[n-m] \stackrel{y}{\leftrightarrow} X\left(e^{j \omega}\right) Y\left(e^{j \omega}\right),
$$

Proof: (under the appropriate assumption of convergence to interchange the order of summations)

$$
\begin{aligned}
\sum_{n=-\infty}^{+\infty} \sum_{m=-\infty}^{\infty} x[m] y\left[n-m e^{-j e n}\right. & =\sum_{m=-\infty}^{+\infty} x[m] \sum_{n=-\infty}^{\infty} y\left[n-m e^{-j e n}\right. \\
& =\sum_{m=-\infty}^{+\infty} x[m] \sum_{p=-\infty}^{\infty} y\left[p e^{-j \rho(p+m)}\right. \\
& =\sum_{m=-\infty}^{+\infty} x[m] e^{-j e m} \sum_{p=-\infty}^{\infty} y\left[p e^{-j e p}\right. \\
& =X\left(e^{j \omega}\right) Y\left(e^{j \omega}\right)
\end{aligned}
$$

Remarks

- The basic use of this property is to compute the output signal of a system for a particular input signal, given its impulse response or DTFT.

The convolution property is also useful in DT filter design and feedback control system design.

Calculating DT convolution using FT

Example:
Given a system with $h[n]=\alpha^{n} u[n],|\alpha|<1$, and an input $x[n]=\beta^{n} u[n],|\beta|<1$, determine the output signal.

The DTFT of the output is given by

$$
Y\left(e^{j \omega}\right)=H\left(e^{j \omega}\right) X\left(e^{j \omega}\right)=\frac{1}{1-\alpha e^{-j \omega}} \frac{1}{1-\beta e^{-j \omega}}
$$

We perform a partial fraction expansion of $Y\left(e^{j \omega}\right)$ to be able to use the table of DTFT pairs to obtain $y[n]$. Let $z=e^{j \omega}$ for convenience.

$$
\begin{gathered}
\frac{1}{\left(1-\alpha z^{-1}\right)\left(1-\beta z^{-1}\right)}=\frac{A}{1-\alpha z^{-1}}+\frac{B}{1-\beta z^{-1}} \\
\left.\frac{1}{\left(1-\beta z^{-1}\right)}\right|_{z=\alpha}=A+\left.\frac{B\left(1-\alpha z^{-1}\right)}{1-\beta z^{-1}}\right|_{z=\alpha} \Rightarrow A=\frac{\alpha}{(\alpha-\beta)}, \quad \alpha \neq \beta \\
\left.\frac{1}{\left(1-\alpha z^{-1}\right)}\right|_{z=\beta}=B+\left.\frac{B\left(1-\beta z^{-1}\right)}{1-\alpha z^{-1}}\right|_{z=\beta} \Rightarrow B=\frac{\beta}{(\beta-\alpha)}, \quad \alpha \neq \beta
\end{gathered}
$$

For $\alpha \neq \beta$, we use the table to get

$$
y[n]=\frac{\alpha}{\alpha-\beta} \alpha^{n} u[n]+\frac{\beta}{\beta-\alpha} \beta^{n} u[n], \alpha \neq \beta
$$

For the case $\alpha=\beta$, we have

$$
Y\left(e^{j \omega}\right)=\frac{1}{\left(1-\alpha e^{j \omega}\right)^{2}}=\frac{j}{\alpha} \frac{d}{d \omega}\left(\frac{1}{1-\alpha e^{j \omega}}\right)
$$

The derivative times $\frac{j}{\alpha}$ yields $w[n]=n \alpha^{n-1} u[n]$, and the multiplication by $e^{j \omega}$ is a unit time advance, so finally
$y[n]=(n+1) \alpha^{n} u[n+1]=(n+1) \alpha^{n} u[n]$.

Multiplication of Two Signals

With the two signals as defined above:

$$
x[n] y[n] \leftrightarrow \frac{1}{2 \pi} \int_{2 \pi} Y\left(e^{j \theta}\right) X\left(e^{j(\omega-\theta)}\right) d \theta
$$

Remarks

- Note that the resulting DTFT is a periodic convolution of the two DTFTs.
- This property is used in discrete-time modulation and sampling.

Proof:

$$
\begin{aligned}
& \sum_{n=-\infty}^{\infty} x[n] y[n] e^{-j \omega n}=\frac{1}{2 \pi} \sum_{n=-\infty}^{\infty} x[n]\left\{\int_{2 \pi} Y\left(e^{j \theta}\right) e^{j \theta n} d \theta\right\} e^{-j \omega n} \\
& =\frac{1}{2 \pi} \int_{2 \pi} Y\left(e^{j \theta}\right)\left\{\sum_{n=-\infty}^{\infty} x[n] e^{-j(\omega-\theta) n}\right\} d \theta \\
& \quad=\frac{1}{2 \pi} \int_{2 \pi} Y\left(e^{j \theta}\right) X\left(e^{j(\omega-\theta)}\right) d \theta
\end{aligned}
$$

First difference and running sum

First Difference
The first difference of a signal has the following spectrum:
$x[n]-x[n-1] \stackrel{\Im}{\leftrightarrow}\left(1-e^{-j \omega}\right) X\left(e^{j \omega}\right)$
Running Sum (accumulation)
The running sum of a signal is the inverse of the first difference.

$$
\sum_{m=-\infty}^{n} x[m] \stackrel{F}{\leftrightarrow} \frac{1}{\left(1-e^{-j \omega}\right)} X\left(e^{j \omega}\right)
$$

Conjugation and Conjugate Symmetry

Taking the conjugate of a signal has the effect of conjugation and frequency reversal of the DTFT.

$$
x^{*}[n] \stackrel{F}{\leftrightarrow} X^{*}\left(e^{-j \omega}\right)
$$

Real and even $x[n]$

For $x[n]$ real, the DTFT is conjugate symmetric:

$$
X\left(e^{j \omega}\right)=X^{*}\left(e^{-j \omega}\right) .
$$

This implies

$$
\begin{aligned}
& \left|X\left(e^{j \omega}\right)\right|=\left|X\left(e^{-j \omega}\right)\right|, \\
& \angle X\left(e^{-j \omega}\right)=-\angle X\left(e^{j \omega}\right), \\
& X(1)=r e a l, \\
& \operatorname{Re}\left\{X\left(e^{-j \omega}\right)\right\}=\operatorname{Re}\left\{X\left(e^{j \omega}\right)\right\}, \\
& \operatorname{Im}\left\{X\left(e^{-j \omega}\right)\right\}=-\operatorname{Im}\left\{X\left(e^{j \omega}\right)\right\}
\end{aligned}
$$

For $x[n]$ real and even, the DTFT is also real and even

$$
X\left(e^{j \omega}\right)=X\left(e^{-j \omega}\right)=\text { real }
$$

Real-odd and even-odd x[n]

For $x[n]$ real and odd, the DTFT is purely imaginary and odd

$$
X\left(e^{j \omega}\right)=-X\left(e^{-j \omega}\right)=\text { imaginary }
$$

For even-odd decomposition of the signal

$$
x[n]=x_{e}[n]+x_{o}[n],
$$

$$
x_{e}[n] \stackrel{\mathcal{F}}{\leftrightarrow} \operatorname{Re}\left\{X\left(e^{j \omega}\right)\right\}, x_{o}[n] \stackrel{\mathcal{F}}{\leftrightarrow} j \operatorname{Im}\left\{X\left(e^{j \omega}\right)\right\}
$$

Parseval's Relation

$$
\sum_{n=-\infty}^{\infty}|x[n]|^{2}=\frac{1}{2 \pi} \int_{2 \pi}\left|X\left(e^{j \omega}\right)\right|^{2} d \omega
$$

the energy of the signal $=$ the energy in its spectrum.
The squared magnitude of the DTFT $\left|X\left(e^{j \omega}\right)\right|^{2}$ is referred to as the energy-density spectrum of the signal $x[n]$.

Proof by yourself.

