McGill University Department of Electrical and Computer
Engineering

Lecture 27

November 10, 2008

Hui Qun Deng, PhD

Properties of Fourier Series of DT signals

1. Time scaling (down-sampling and up-sampling)
2. Periodic convolution
3. Multiplication
4. Difference
5. Running sum
6. Conjugation and symmetry
7. Parseval' relation for DT FS

Fourier Transform of DT signals

Time Scaling $x[m n], \mathrm{m}>1$ (decimation or downsampling)

Signal $\chi[\mathrm{mn}]$ is called a decimated or downsampled version of $x[n]$, i.e., only every $m^{\text {th }}$ sample of $x[n]$ is retained.
$\chi[\mathrm{mn}]$ is periodic if $\exists M$ such that

$$
x[m n]=x[m(n+M)]=x[m n+m M] .
$$

The above condition holds if $\exists \mathrm{p}, \mathrm{M} \in \mathrm{Z}$ such that

$$
m M=p N
$$

Letting $m=p<N, M=N$, then the signal $x[m n]$ is also periodic of period N.

Time Scaling $x[n / m], \mathrm{m}>1$ (up-sampling)

The signal $x_{\uparrow m}[n]:=\left\{\begin{array}{c}x[n / m], \text { if } n \text { is a multiple of } m \\ 0, \text { if } n \text { is not a multiple of } m\end{array}\right.$
is sometimes called an upsampled version of the periodic signal $x[n]$.
The upsampling operation inserts $m-1$ zeros between consecutive samples ot the original signal.

The up-sampled signal has a fundamental period $m N$, because

$$
\begin{aligned}
x_{\uparrow m}[n+m N] & : \\
& =\left\{\begin{aligned}
x[(n+m N) / m]=x[n / m+N]=x[n / m], \text { if } n \text { is a multiple of } m \\
0, \text { if } n \text { is not a multiple of } m
\end{aligned}\right. \\
& =x_{\uparrow m}[n]
\end{aligned}
$$

Thus, the up-sampled signal has a fundamental frequency $\frac{2 \pi}{\mathrm{mN}}$.

Example

Example (upsampling)

n

FS of up-sampled DT signals

The Fourier series coefficients of the upsampled signal $X_{\uparrow_{m}}[n]$ are given by:

$$
x_{\uparrow m}[n] \stackrel{\mathrm{FS}}{\leftrightarrow} \frac{1}{m} a_{k},
$$

where $\left\{\frac{1}{m} a_{k}\right\}$ is viewed as a periodic sequence of period $m N$.

Proof:

$$
\begin{aligned}
b_{k} & =\frac{1}{m N} \sum_{n=\langle m N\rangle} x_{\uparrow m}[n] e^{-j k \frac{2 \pi}{m N} n}=\frac{1}{m N} \sum_{n=0, m, . ., m(N-1)} x[n / m] e^{-j k \frac{2 \pi}{m N} n} \\
& =\frac{1}{m N} \sum_{p=\langle N\rangle} x[p] e^{-j k \frac{2 \pi}{N} p}=\frac{1}{m} a_{k}
\end{aligned}
$$

Periodic Convolution of Two Signals

Suppose that $x[n]$ and $y[n]$ are both periodic with period N.
$\mathcal{F} S$
FS
For $x[n] \leftrightarrow a_{k}, y[n] \leftrightarrow b_{k}$, we have

$$
\sum_{m=<N>} x[m] y[n-m] \stackrel{F S}{\leftrightarrow} N a_{k} b_{k}
$$

Remarks

- The periodic convolution is itself periodic of period N (Show it as an exercise)
- Periodic convolution is useful in periodic signal filtering. The DTFS coefficients of the input signal are $a_{k}{ }^{\prime} s . b_{k}$'s are designed to attenuate or amplify certain frequencies. The resulting DT output signal is given by the periodic convolution above.
H. Deng, L27_ECSE306

Multiplication of two periodic signals

With the two periodic signals as defined above, we have:

$$
x[n] y[n] \stackrel{\mathcal{F S}}{\leftrightarrow} \sum_{l=\langle N\rangle} a_{l} b_{k-l},
$$

i.e., multiplication in the time domain corresponds to a periodic convolution of the spectral (FS) coefficient sequences. (Recall: the spectral (FS) coefficient sequence is also periodic.)
This property is used in the discrete-time modulations of a periodic signal.

First Difference

The first difference of a periodic signal is often used as an approximation to the continuous-time derivative.

It has the following spectral (FS) coefficients:

$$
x[n]-x[n-1] \stackrel{\mathcal{F S}}{\leftrightarrow}\left(1-e^{-j k \frac{2 \pi}{N}}\right) a_{k}
$$

Running Sum

The running sum of a signal is the inverse of the first difference.

Note: the running sum of a periodic signal is periodic only if $a_{0}=0$, i.e., only if the DC component of the signal is 0 .

$$
\sum_{m=-\infty}^{n} x[m] \stackrel{\mathcal{F} S}{\leftrightarrow} \frac{1}{\left(1-e^{-j k \frac{2 \pi}{N}}\right)} a_{k}
$$

Conjugation and Conjugate Symmetry

Taking the conjugate of a periodic signal has the effect of conjugation and frequency reversal on the spectral coefficients.

$$
x^{*}[n] \stackrel{F S}{\leftrightarrow} a^{*}-k
$$

Consequently:

- For $x[n]$ real, the sequence of coefficients is conjugate symmetric ($a_{-k}=a_{k}^{*}$). This implies

$$
\begin{aligned}
& \left|a_{-k}\right|=\left|a_{k}\right|, \angle\left(a_{-k}\right)=-\angle\left(a_{k}\right), a_{0} \in \square, \operatorname{Re}\left\{a_{-k}\right\}=\operatorname{Re}\left\{a_{k}\right\}, \\
& \operatorname{Im}\left\{a_{-k}\right\}=-\operatorname{Im}\left\{a_{k}\right\}
\end{aligned}
$$

- For $x[n]$ real and even, the sequence of coefficients is also real and even ($a_{k}=a_{-k} \in$ Real)
- For $x[n]$ real and odd, the sequence of coefficients is purely imaginary and odd ($a_{-k}=-a_{k}$ purely imaginary)
- For even-odd decomposition of the signal

$$
x[n]=x_{e}[n]+x_{o}[n], x_{e}[n] \stackrel{F S}{\leftrightarrow} \operatorname{Re}\left\{a_{k}\right\}, x_{o}[n] \stackrel{F S}{\leftrightarrow} j \operatorname{Im}\left\{a_{k}\right\}
$$

Parseval's Relation for Discrete Time Fourier Series

$$
\frac{1}{N} \sum_{n=<N>}|x[n]|^{2}=\sum_{k=<N>}\left|a_{k}\right|^{2}
$$

The above Eq. says:
The average power in one period
$=$ The sum of the average powers in all (N) harmonic components of $\mathrm{x}[\mathrm{n}]$.

From periodic signals to aperiodic signals

Consider the following periodic signal $\tilde{x}[n]$, and $x[n]$ equal to $\tilde{x}[n]$ over one period.

$$
x[n]=\left\{\begin{aligned}
\tilde{x}[n], & n=0,1, \ldots N-1 \\
0, & \text { otherwise }
\end{aligned}\right.
$$

Let's examine the DTFS pair of $\tilde{x}[n]$ given by

$$
\begin{aligned}
\tilde{x}[n] & =\sum_{k=(N)} a_{k} e^{j k \frac{2 \pi}{N} n}, \\
a_{k} & =\frac{1}{N} \sum_{n=\langle N\rangle} \tilde{x}[n] e^{-j k \frac{2 \pi}{N} n}=\frac{1}{N} \sum_{n=n_{1}}^{n_{2}} \tilde{x}[n] e^{-j k \frac{2 \pi}{N} n} \\
& =\frac{1}{N} \sum_{n=-\infty}^{\infty} x[n] e^{-j k \frac{2 \pi}{N} n}
\end{aligned}
$$

Definition of FT of DT signals

Define the function,

$$
X\left(e^{j \omega}\right):=\sum_{n=-\infty}^{+\infty} x[n] e^{-j \omega n}
$$

we see that the DTFS coefficients a_{k} are scaled samples of this continuous function of frequency ω. That is,
$a_{k}=\frac{1}{N} X\left(e^{j \frac{2 \pi}{N} k}\right)=\frac{1}{N} X\left(e^{j \omega_{0} k}\right)$. Using this expression,
$\tilde{x}[n]=\sum_{k=\langle N\rangle} \frac{1}{N} X\left(e^{j k \omega_{0}}\right) e^{j k \omega_{0} n}=\frac{1}{2 \pi} \underbrace{\sum_{k=\langle N} X\left(e^{j k \omega_{0}}\right) e^{j k \omega_{0} n} \omega_{0}}_{k=\langle N\rangle}$.

$$
\tilde{x}[n]=\sum_{k=\langle N\rangle} \frac{1}{N} X\left(e^{j k \omega_{0}}\right) e^{j k \omega_{0} n}=\frac{1}{2 \pi} \sum_{k=\langle N\rangle} X\left(e^{j k \omega_{0}}\right) e^{j k \omega_{0} n} \omega_{0}
$$

Apply the concept of Riemann Sum to the above.
Taking the limit of the above equation as $N \rightarrow+\infty$, we get

- $k \omega_{0} \rightarrow \omega$
- the summation over $N \rightarrow \infty$ intervals of width $\omega_{0}=\frac{2 \pi}{N} \rightarrow d \omega$ tends to an integral over an interval of width 2π
- $\tilde{x}[n] \rightarrow x[n]$

Thus,

$$
x[n]=\frac{1}{2 \pi} \int_{2 \pi} X\left(e^{j \omega}\right) e^{j \omega n} d \omega
$$

Fourier transform pair of discrete-time signals

$$
x[n]=\frac{1}{2 \pi} \int_{2 \pi} X\left(e^{j \omega}\right) e^{j \omega n} d \omega
$$

$$
X\left(e^{j \omega}\right)=\sum_{n=-\infty}^{+\infty} x[n] e^{-j \omega n}
$$

FT of DT signals is periodic

Fourier transform of $x[n]$ is periodic of period 2π :

$$
\begin{aligned}
X\left(e^{j(\omega+2 \pi)}\right) & =\sum_{n=-\infty}^{+\infty} x[n] e^{-j(\omega+2 \pi) n} \\
& =\sum_{n=-\infty}^{+\infty} x[n] e^{-j \omega n} e^{-j 2 \pi n} \\
& =\sum_{n=-\infty}^{+\infty} x[n] e^{-j \omega n}=X\left(e^{j \omega}\right)
\end{aligned}
$$

Convergence of the DT Fourier Transform

Sufficient conditions for convergence of the infinite summation of the DTFT.
The DTFT $\sum_{n=-\infty}^{+\infty} x[n] e^{-j \omega n}$ will converge either if:
the signal is absolutely summable, i.e., $\sum_{n=-\infty}^{+\infty}|x[n]|<\infty$,
or if the sequence has finite energy, i.e., $\sum_{n=-\infty}^{+\infty}|x[n]|^{2}<\infty$.
In contrast, the finite integral in the synthesis equation always converges.

Example 1: The FT of DT exponentials

Consider the exponential signal $x[n]=a^{n} u[n], a \in \square, 0<a<1$.

Its FT is: $\quad X\left(e^{j \omega}\right)=\sum_{n=0}^{+\infty} a^{n} e^{-j \omega n}=\sum_{n=0}^{+\infty}\left(a e^{-j \omega}\right)^{n}=\frac{1}{1-a e^{-j \omega}}$

Note that this infinite sum converges because $\left|a e^{-j \omega}\right|=|a|<1$. The magnitude of $X\left(e^{j \omega}\right)$ is plotted below:

Can you see the periodicity of the spectrum?

Example 2: The FT of DT rectangular

function

Consider the rectangular pulse $X[n]=\left\{\begin{array}{l}1,|n| \leq n_{0} \\ 0,\end{array}|n|>n_{0} . ~\right.$.

$$
\begin{aligned}
X\left(e^{j \omega}\right) & =\sum_{n=-\infty}^{+\infty} x[n] e^{-j \omega n}=\sum_{n=-n_{0}}^{n_{0}} e^{-j \omega n}=e^{j \omega n_{0}} \sum_{m=0}^{2 n_{0}} e^{-j \omega m} \\
& =e^{j \omega n_{0}} \frac{1-e^{-j \omega\left(2 n_{0}+1\right)}}{1-e^{-j \omega}} \\
& =\frac{e^{j \omega n_{0}}-e^{-j \omega\left(n_{0}+1\right)}}{1-e^{-j \omega}} \\
& =\frac{e^{-j \omega / 2}}{e^{-j \omega / 2}} \frac{e^{j \omega\left(n_{0}+1 / 2\right)}-e^{-j \omega\left(n_{0}+1 / 2\right)}}{e^{j \omega / 2}-e^{-j \omega / 2}} \\
& =\frac{\sin \omega\left(n_{0}+1 / 2\right)}{\sin (\omega / 2)}
\end{aligned}
$$

Example 3

The Fourier transform of a pulse with $n_{0}=2$:

