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The response of a DTLTI system to a complex exponential input
Czn, z∈Complex, is the convolution:   
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H(z) is called the Z transform of the impulse response of the system:
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Response of Discrete-Time LTI (DTLTI) 
Systems to Complex Exponentials

)(zHzDTLTIz nn →→

Thus, the response to an complex exponential is the same complex
exponential multiplied by a (complex) amplitude H(z):
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The frequency of a complex exponential 
1j ne ω

 is ω1. 
Its fundamental period is  
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Its fundamental frequency is  

N
πω 2

0 = . 

The set of all DT complex exponentials with period N is: 
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DT periodic complex exponentials
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Consider the set of all harmonically-related DC 
exponentials with fundamental period N: 
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In fact, there are only N (not infinite) distinct exponentials
in this set, because 
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In contrast, for continuous time periodic signals, there are infinite 
number of harmonic exponentials.

Harmonically-related DT exponentials 
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N consecutive narmonically-related complex exponentials
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 are distinct, and are denoted as a set: 

1,...,1,]}[{ −++= Npppkk nφ .  
The above set is identical to the following set  

1,...,1,]}[{ −++= Nrrrkk nφ . 

Distinct harmonics
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Harmonically-related exponentials are orthogonal: 

Note: the operation of multiplication-and-then-summation sample by 
sample measures the correlation between two signals.
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For example, the case N=6 is considered. 
Frequencies of discrete-time complex harmonics for N=6 
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The fundamental period of N distinct harmonically-related 
complex exponentials is not necessarily N for all. 
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Consider a periodic DT signal of period N that can be 
represented using a linear combination of the

exponentials in the set 1,...,1,]}[{ −++= Npppkk nφ
. 
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Fourier Series Representation of DT Periodic 
Signals
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We can compute the coefficients ak by multiplying the 

Fourier series by φ
π

k
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DT FS coefficients

Without losing generality, we have:
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DT Fourier series coefficients
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which can be written in matrix-vector form as 
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The matrix in this equation can be shown to be invertible, 
hence to each x n[ ]  of period N  there corresponds a 
unique set of coefficients, and vice-versa. 
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The coefficients ak are called the discrete-time Fourier series 
coefficients of x[n]. 
The discrete-time Fourier series pair is given by 
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Remarks 

• The coefficients ak can be seen as a periodic sequence,
as they repeat with period N. 

• All summations are finite, which means that the sums 
always converge 
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Example 

Consider the following DT periodic signal x n[ ]  of period 4N = : 

 

 

 

 

We can compute its 4 distinct Fourier series coefficients 
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DTFS coefficients
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Let's see if we can recover x[ ]1 : 
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Notation: [ ] kx n a↔
FS

  represents a discrete-time Fourier series 
pair.  
 
The properties of DT Fourier series are similar to those of CT 
Fourier series.  
 
All signals are assumed to be periodic with fundamental 

period N and fundamental frequency 0
2
N
πω = , unless 

otherwise specified. 
 
The DTFS coefficients are often called spectral coefficients. 

Properties of DT Fourier Series
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The operation of calculating the DTFS of a periodic signal is linear.  

For x n ak[ ]↔
FS

, y n bk[ ]↔
FS

, if we form the linear combination
z n Ax n By n[ ] [ ] [ ]= + , then we have 

z n Aa Bbk k[ ]↔ +
FS

.  

Linearity
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Time shifting leads to a multiplication by a complex exponential.  

For x n ak[ ]↔
FS

, 

x n n e a
jk

N
n
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−

0

2
0FS π

.    

Remarks:  
The magnitudes of the Fourier series coefficients are not changed, only 
their phases.  
 
A time shift by an integer number of periods, i.e., of 
n pN p0 2 1 0 1 2= = − −, , , , , , ,K K does not change the DTFS 
coefficients, as expected. 

Time Shifting
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Time reversal leads to a "frequency reversal" of the corresponding 
sequence of Fourier series coefficients: 

x n a k[ ]− ↔ −

FS

.  
Interesting consequences: 

• For x[n] even, the sequence of coefficients is also even (a ak k− = ) 

• For x[n] odd, the sequence of coefficients is also odd (a ak k− = − ) 

Time Reversal
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