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A general second-order system has a transfer function of 
the form 
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It can be stable, unstable, causal or not, depending on the 
signs of the coefficients and the specified ROC.  
Let's restrict our attention to causal, stable LTI second-
order systems of this type.  
Necessary and sufficient condition for stability: the 
coefficients ai are all positive, or all negative. The poles are 
given by: 

Frequency Response of General Second-Order  
Systems 
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Assume that b1=b2=0, then the transfer function is  
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where ζ is the damping ratio and ω n is the undamped 
natural frequency. The poles are: 
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Many physical systems such as the mass-spring-damper 
system or a RLC filter can be modeled using this transfer
function, which corresponds to the differential equation: 
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The damping ratio and natural frequency
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In this case, the system is said to be overdamped.  
-The step response doesn't exhibit any ringing.  
-The two poles are real, negative and distinct: 
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1 21, 1n n n np pζω ω ζ ζω ω ζ= − + − = − − − .  

 
The second-order system can be seen as a cascade of two 
standard first-order systems (lags). 
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Case ζ>1
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The Bode plot of H j A j
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 is easy to sketch 
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In this case, the system is said to be critically damped.  

-The two poles are negative and real, but they are the same. 

 2
1 21n n np j pζω ω ζ ζω= − + − = − = .  

 

The second-order system can also be seen as a cascade of two 
first-order transfer functions having the same pole. 
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Case ζ=1
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In this case, the system is said to be underdamped.  
 
The step response exhibits some ringing, although it really 
becomes visible only for 1 2 0.707ζ < = . 
 
The two poles are distinct, complex conjugate: 

2 2
1 21 , 1n n n np j p jζω ω ζ ζω ω ζ= − + − = − − − . 

Case ζ<1
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The Bode plots of general second-order systems with different 
damping factors

Note:

1. For ζ<1, the approximation 
error of the asymptotes 
increases greatly around the 
break frequency.

2. For ζ=0.707, the magnitude 
response has maximal  flatness, 
and corresponds to a second-
order lowpass Batterworth filter 
with cutoff frequency ωn.
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Consider the second-order transfer function  
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Where ω n = 3 2 2 , and the damping ratio is 
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Since the damping ratio is less than one, the two poles are complex. 
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Example
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In the field of communications, the underdamped second-
order filter has played an important role as a simple
frequency-selective bandpass filter.  
When the damping ratio is very low, the filter becomes
highly selective due to its high peak resonance at  

2
max 21 ξωω −= n . 

 The quality Q of the filter is defined as 
Q =

1
2ς .  

Quality Q
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The –3 dB bandwidth

Δω ω ςω≈ =max
maxQ

2

The –3dB bandwidth = the frequency difference between the 
two frequencies where the magnitude is 3 dB lower than the 
peak magnitude.
For the second-order filter, the –3 dB bandwidth is:   
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The step response of an under-damped 
second-order system
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Settling time is the time response first reaches its final 
value within a certain percentage, as shown by ts.

For a second-order system, ts depends primarily on ωn but 
also on ζ . For a given ωn, the settling time is a nonlinear 
function of ζ. 
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The transfer function of an ideal delay of T time units is 

H s e sT( ) = −
. 

• Its frequency response is H j e j T( )ω ω= −
. 

• Its magnitude its is 1 for all frequencies. 
• Its phase is ∠H(jω)=-ωT, which is linear and 

negative for positive frequencies. 

Ideal delay system



H. Deng, 
L25_ECSE306

15

 

 

 

 

 

 
(rd) 

ω (log) 
π/2Τ 

−π/2 

−π 

π/Τ 

ω (log) (dB) 
0 

20 10log ( )H jω

∠H j( )ω

Note: the linear phase response is an exponential function of the 
log-scale frequency:
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The Bode plots of an ideal delay system
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The group delay is defined as follows: 

  τ ω
ω

ω( ): ( )= − ∠
d

d
H j     (second) 

 
• A pure delay system has a constant group delay of T 

seconds. 
• Group delay gives an idea of how much the bulk of a 

signal is delayed in a given frequency band. 
• Non-constant group delay leads to output waveform 

distortion caused by the phase. 

Group delay
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A system is said to be an all-pass system, if its transfer 
functions has poles on the left half s-plane and zeros on
the right half s-plane, and if each pole (zero) is a “mirror”
of a zero (pole).  

All-Pass Systems 
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An example of an all-pass system is shown below.
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As Ni=Mi, then
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Applications of all-pass system

• Phase correction
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Minimum phase system

1. A system is called as minimum phase system if its all 
zeros are in the left half s-plane or jω axis.  Otherwise, 
the system is called non-minimum phase system.

2. A non-minimum phase system can be viewed as a 
cascade of a minimum phase system and an all-pass 
system.

3. A minimum phase system has less absolute phase shift 
to input signals than a non-minimum phase system with 
the same magnitude response.
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Example 1. Consider the minimum-phase system H s( ) = 1. 
The magnitude of its frequency response if 1, and its phase
is zero for all frequencies.  
 

Example 2. Now consider the system 
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+ . 
This is a non-minimum phase and all-pass system. Its 
magnitude of the frequency response is 1 for all frequencies.
Its phase is given by 
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which tends to −π  as ω → ∞ .  

Examples
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Such a system is called an allpass system because it passes all
frequencies with unity gain.
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The non-minimum phase system  
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has the same magnitude as the minimum-phase system 
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Note that any non-minimum phase transfer function
can be expressed as the product of a minimum-
phase transfer function and an allpass transfer
function.

For the example above, we can write
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−minimum phase allpass
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(Minimum-phase system)
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