

ECSE 306 - Fall 2008 Fundamentals of Signals and Systems

McGill University Department of Electrical and Computer Engineering

Lecture 24 October 31, 2008 Hui Qun Deng

Bode Plots of Multi-Order (multi-pole-zero) Systems

Frequency Responses of First-Order Lag, Lead Systems

Steps of drawing Bode plots

- Step 1: Dividing multi-order system into cascade of multiple 1st-order systems, each containing a single pole or zero;
- Step 2: Determining the asymptotes and break frequencies of these 1st-order systems;
- Step 3: Adding up the Bode plots of these 1st-order systems.

Example of a first-order system

Consider again the first-order system with frequency response

$$H(j\omega) = \frac{1}{j\omega + 2}.$$

It is convenient to write it as the product of a gain and a first-order transfer function with unity gain at DC:

$$H(j\omega) = \frac{1}{2} \frac{1}{j\omega/2 + 1}.$$

The Bode magnitude plot of the first-order system

The Bode plot of the magnitude is the graph of $20\log_{10}|H(j\omega)| = 20\log_{10}\left|\frac{1}{2}\right| + 20\log_{10}\left|\frac{1}{\frac{j\omega}{2}+1}\right| dB$ $= -20\log_{10}2 - 20\log_{10}\left|\frac{j\omega}{2}+1\right| dB$ $= -6dB - 20\log_{10}\left|\frac{j\omega}{2}+1\right| dB$

The Bode magnitude plot of a 1st-order system has 2 asymptotes: one straight line for very low frequencies, and one straight line for very high frequencies. The frequency at which the two asymptotes meet is called the break frequency. The low- and high-frequency asymptotes of the firstorder system For low frequencies ($\omega <<2$), $20\log_{10}|H(j\omega)| \approx -6dB - 20\log_{10}|1|dB = -6dB$

i.e., for very low frequencies the Bode magnitude plot approximates a straight line.

For high frequencies ($\omega >> 2$),

$$20\log_{10} |H(j\omega)| \approx -6 \, dB - 20\log_{10} \left| \frac{\omega}{2} \right| dB$$

= -6 \, dB - 20\log_{10} |\omega| \, dB + 20\log_{10} 2 \, dB
= -20\log_{10} |\omega| \, dB

i.e., for very high frequencies, the Bode magnitude plot approximates a straight line with a slop -20 dB/decade, or -6 dB/octave.

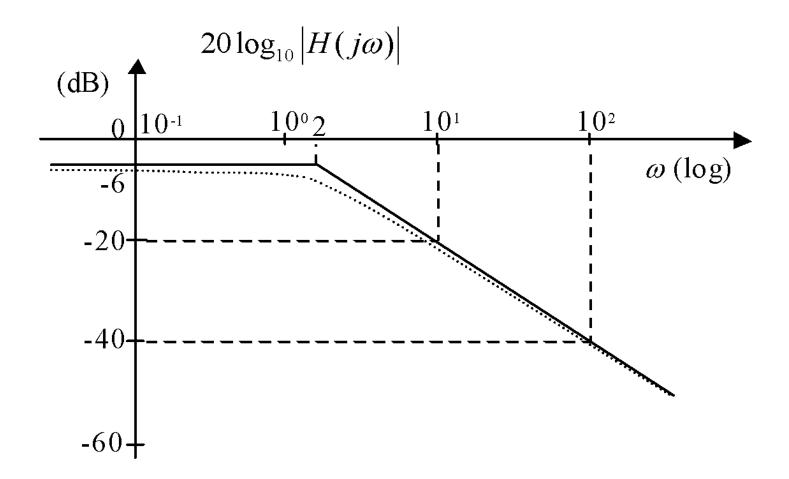
The slop of the high-frequency asymptotes

For $\omega >> 2$, say $\omega = 10$, we get -20 dB; for $\omega = 100$, we get -40 dB, etc.

Therefore, the slope of the asymptote is -20dB/decade.

The 2 asymptotes meet at the break frequency 2 radians/s, at which the magnitude drops from the DC gain by 3 dB.

Given the 2 asymptotes and the drop at the break frequency, we can sketch the magnitude Bode plot (the dashed line as follows).



The asymptotes of the Bode phase plot of the 1st-order system The phase response is given by:

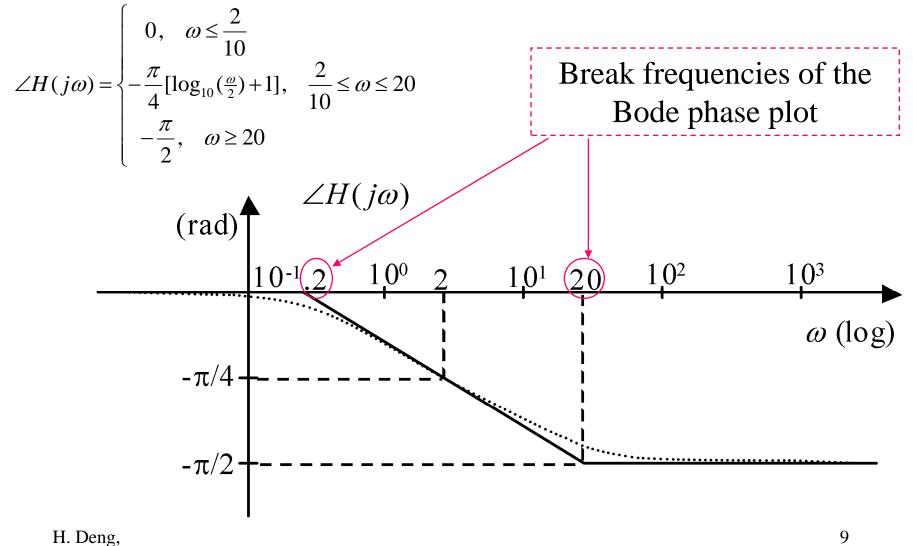
$$\angle H(j\omega) = \angle \frac{1}{2} \frac{1}{j\omega/2 + 1} = \angle \frac{1}{j\omega/2 + 1} = \arctan(\frac{-\omega}{2})$$

For $\omega <<2$, the phase approximates 0; for $\omega >>2$ the phase is approximates $-\frac{\pi}{2}$. i.e., at very low and very high frequencies the phase response approximates to 2 parallel asymptotes, respectively Connecting the 2 parallel asymptotes is a straight line, the third asymptotes. The three asymptotes are given by the following piece wise linear function:

$$\angle H(j\omega) = \begin{cases} 0, & \omega \le \frac{2}{10} \\ -\frac{\pi}{4} [\log_{10}(\frac{\omega}{2}) + 1], & \frac{2}{10} \le \omega \le 20 \\ -\frac{\pi}{2}, & \omega \ge 20 \end{cases}$$

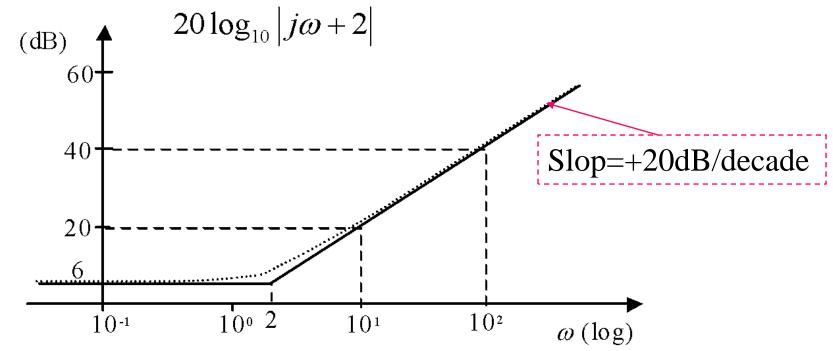
8

The break frequencies of the Bode phase plot of the 1st-order system



L24_ECSE306

The Bode magnitude plot of a single-zero system



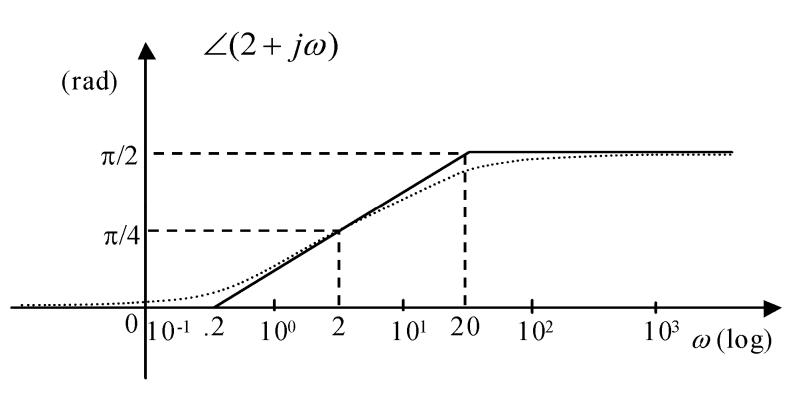
Given a numerator $(j\omega+2)$, i.e., the inverse of $1/(j\omega+2)$, the Bode magnitude plot is simply the Bode magnitude plot of $1/(j\omega+2)$ flipped around the frequency axis, because:

H. Deng,

L24 ECSE306

$$20\log_{10} |j\omega + 2| = -20\log_{10} \frac{1}{|j\omega + 2|}$$
¹⁰

The Bode phase plot of a single-zero system



Given a single-zero system (s+2), i.e., the inverse of 1/(s+2), the Bode phase plot is simply the Bode phase plot of 1(s+2) flipped around the frequency axis, because:

$$\angle (2+j\omega) = -\angle \frac{1}{2+j\omega}$$
¹¹

The Bode plots of a second-order system

Second-Order Example:

$$H(s) = \frac{s+100}{\left(s^2+11s+10\right)} = \frac{s+100}{\left(s+1\right)\left(s+10\right)}$$
$$= 10\frac{\frac{s}{100}+1}{\left(s+1\right)\left(\frac{s}{10}+1\right)}, \operatorname{Re}\{s\} > -1$$

which has the frequency response

$$H(j\omega) = 10 \frac{\frac{j\omega}{100} + 1}{(j\omega+1)(\frac{j\omega}{10} + 1)}$$

The break frequencies are 1, 10 and 100 radians/s.

The Bode magnitude plot of the second-order system

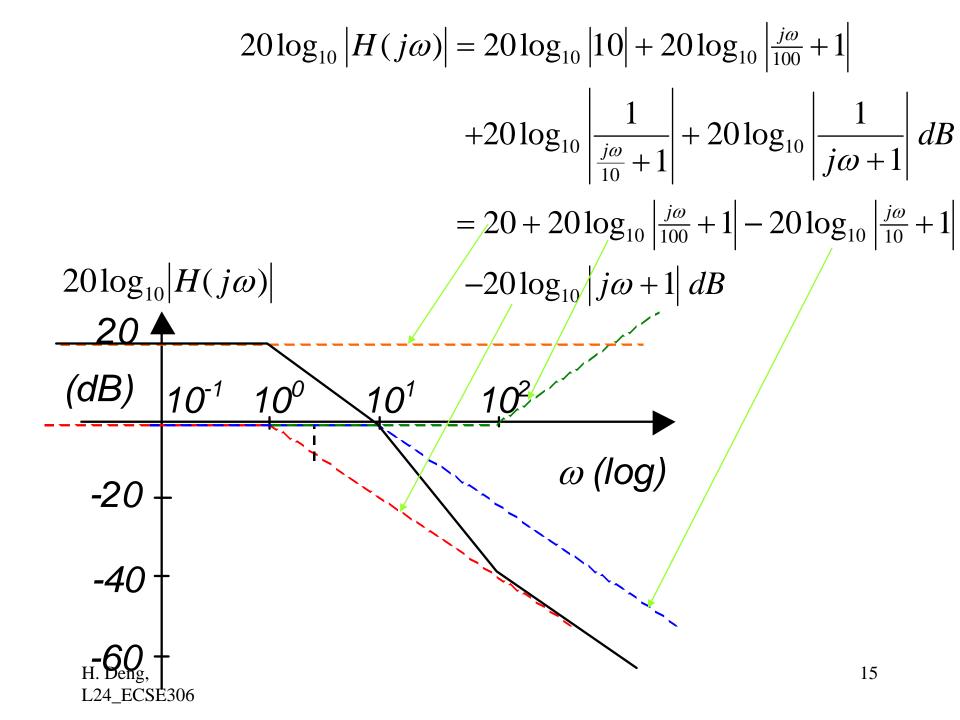
The **Bode magnitude plot** is the graph of $20\log_{10}|H(j\omega)| = 20\log_{10}|10| + 20\log_{10}|\frac{j\omega}{100} + 1|$ $+20\log_{10}\left|\frac{1}{\frac{j\omega}{10}+1}\right|+20\log_{10}\left|\frac{1}{j\omega+1}\right|dB$ $= 20 + 20\log_{10}\left|\frac{j\omega}{100} + 1\right| - 20\log_{10}\left|\frac{j\omega}{10} + 1\right|$ $-20\log_{10}|j\omega+1|\,dB$

At low frequencies ($\omega <<1$), $20\log_{10} |H(j\omega)| \approx 20 \, dB + 20\log_{10} |1| - 20\log_{10} |1|$ H. Deng, L24 ECSE306 $-20\log_{10} |1| \, dB = 20 \, dB$.

13

For high frequencies (
$$\omega >> 100$$
),
 $20\log_{10}|H(j\omega)| \approx 20 + 20\log_{10}\left|\frac{\omega}{100}\right| - 20\log_{10}\left|\frac{\omega}{10}\right| - 20\log_{10}|\omega|dB$
 $= 20 + 20\log_{10}|\omega| - 40 - 20\log_{10}|\omega| + 20 - 20\log_{10}|\omega|dB$
 $= -20\log_{10}|\omega|dB$

We can plot the asymptotes of each first-order term on the same magnitude graph (dashed lines) and then add them together to obtain the Bode magnitude plot (solid line).





First-order lag system A first-order lag has a transfer function of the form

$$H(s)=\frac{\alpha\tau s+1}{\tau s+1},$$

where $0 \le \alpha < 1$, $\tau > 0$ is the time constant.

This system is called a *lag* because it has an effect similar to a pure delay $e^{-\tau s}$ at low frequencies for $\alpha = 0$. To the first order, the two systems are the same, as can be seen from the Taylor series around *s*=0:

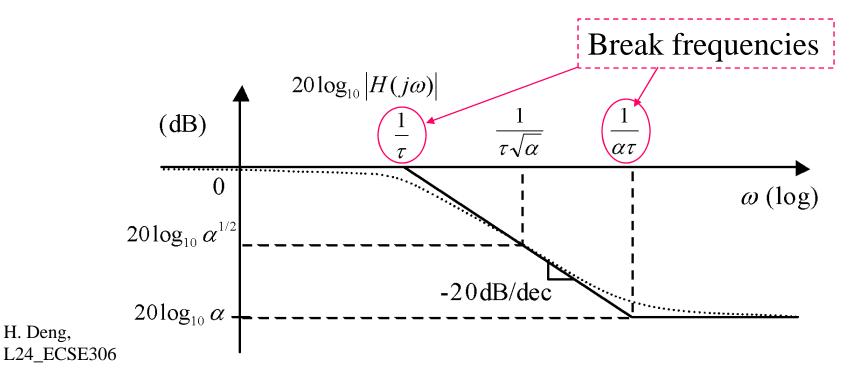
$$\frac{1}{\tau s + 1} = 1 - \tau s + (\tau s)^2 - (\tau s)^3 + \dots \approx 1 - \tau s$$
$$e^{-\tau s} = 1 - \tau s + \frac{1}{2}(\tau s)^2 - \frac{1}{3!}(\tau s)^3 + \dots \approx 1 - \tau s$$

The Bode magnitude plot of the first-order lag system

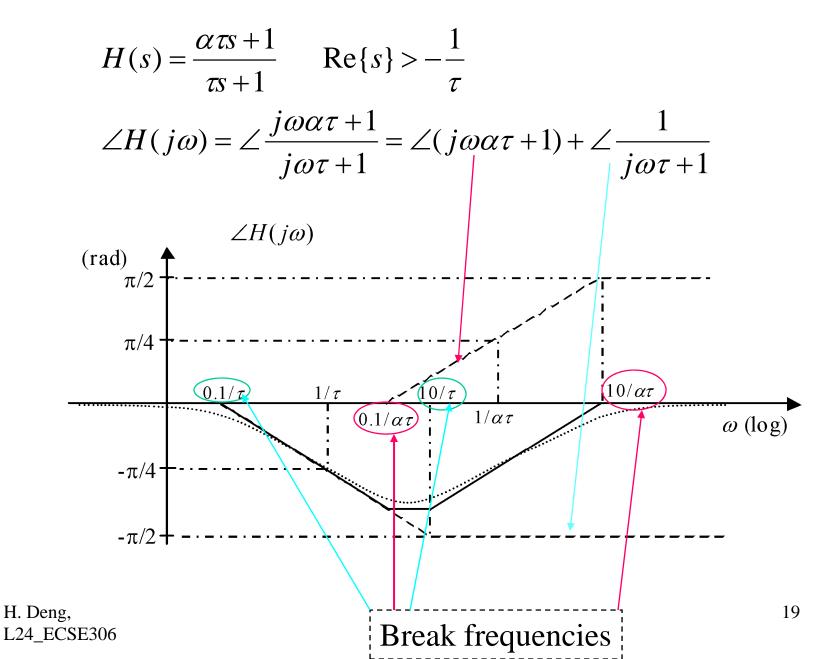
Assuming that $0 < \alpha < 1$, the frequency response of the first-order lag system is

$$H(j\omega) = \frac{j\omega\alpha\tau + 1}{j\omega\tau + 1}$$

The Bode *magnitude* plot of the above system is shown below.



The phase Bode plot of the first-order lag system

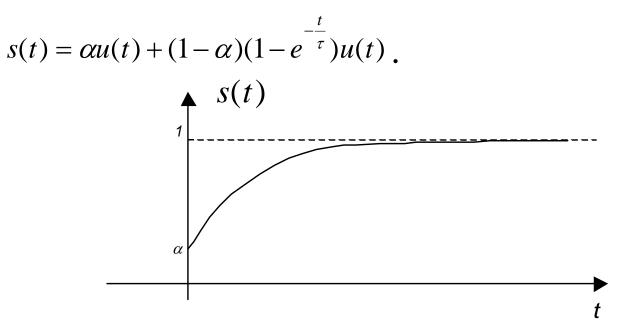


The step response of the first-order lag system

For the case $0 < \alpha < 1$ (lag) and time constant τ , i.e.,

$$H(s) = \frac{\alpha \tau s + 1}{\tau s + 1} = \alpha + \frac{1 - \alpha}{\tau s + 1},$$

the step response is



First-Order Lead

The transfer function of a first-order lead system has the same algebraic expression as that of first-order lag system:

$$H(s) = \frac{\alpha \tau s + 1}{\tau s + 1}$$

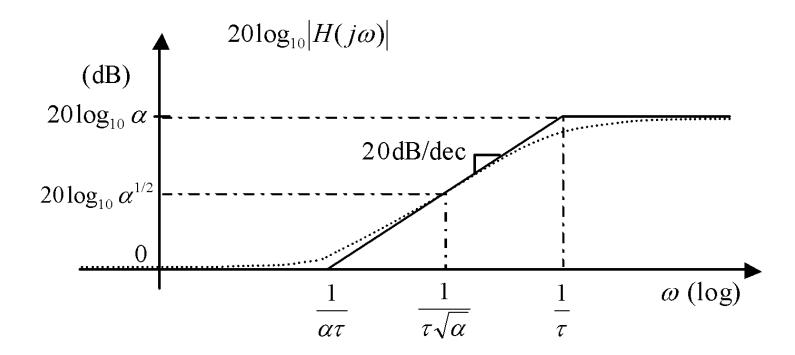
where $\tau > 0$, but $\alpha > 1$.

For $\alpha > 1$, the break frequency $(1/\alpha \tau)$ given by the numerator is smaller than that $(1/\tau)$ given by the denominator.

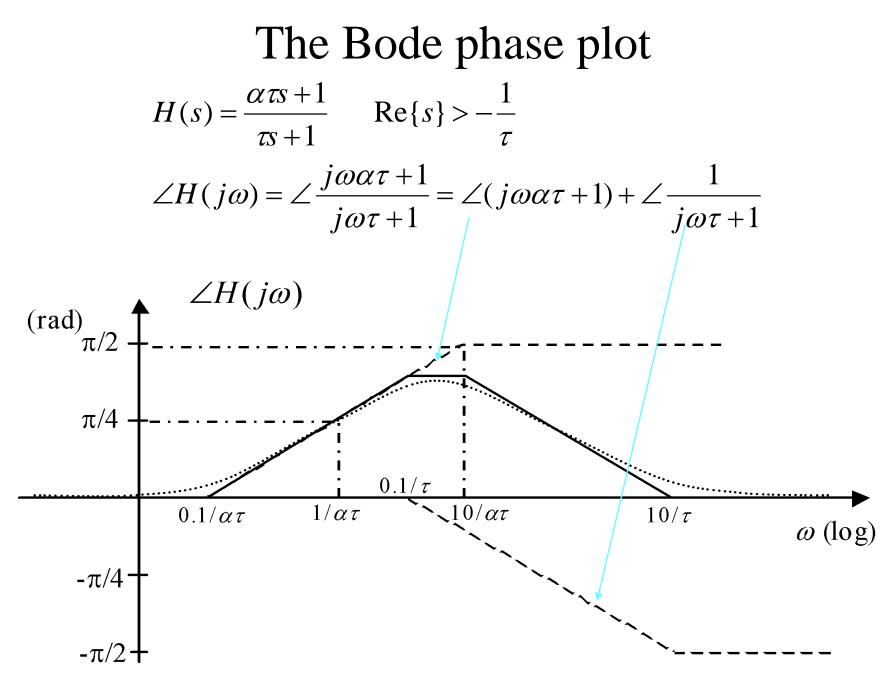
Recall: in a first-order lag system, $\alpha < 1$, and the break frequency $(1/\alpha \tau)$ given by the numerator is greater than that $(1/\tau)$ given by the denominator.

The Bode magnitude plot

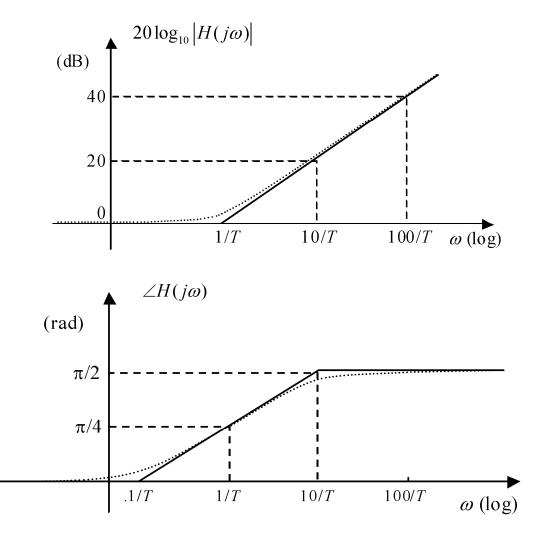
For a first-order lead system, in which $\alpha > 1$, the magnitude increase from a level to a higher level as frequency increases.



Compare with the first-order lag system, in which $\alpha < 1$, the magnitude decrease from a level to a lower level for a system.



For the case where $\tau \rightarrow 0$, $\alpha \tau \rightarrow T$, then the first-order lead is equivalent to a differentiator with gain T in parallel with the identity system: H(s) = Ts + 1

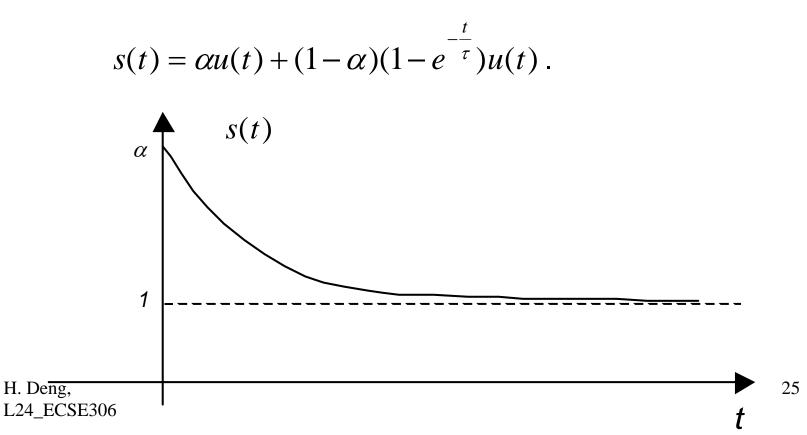


The step response of the first-order lead system

For the case $\alpha > 1$ (lead) and time constant τ , i.e.,

$$H(s) = \frac{\alpha \tau s + 1}{\tau s + 1} = \alpha + \frac{1 - \alpha}{\tau s + 1},$$

the step response is



Applications of first-order lead systems

The first-order lead may be used

- To "differentiate" signals at frequencies higher than $(\alpha \tau)^{-1}$ but lower than τ^{-1} .
- To "reshape" pulses that could have been distorted by a communication channel with a lowpass frequency response.
- As a controller because it adds positive phase to the overall loop transfer function .