Sample Midterm Test 2 (mt2s02)

Covering Chapters 13-16 of Fundamentals of Signals \& Systems

Problem 1 (30 marks)

You have to design the envelope detector shown below to demodulate asynchronously an AM signal $y(t)$ with modulation index $m=0.5$ and carrier frequency $f_{c}=1 \mathrm{kHz}$, where $x(t)$ is the periodic modulating signal shown below. The envelope detector is implemented with a simple RC circuit at the output of a full-wave diode bridge rectifier.

(a) [5 marks] Assuming that the carrier has to be transmitted with unity amplitude, write the expression for the signal $y(t)$. Provide a rough sketch of $y(t)$.

Answer:

$$
y(t)=[1+0.5 x(t)] \cos \left(2 \pi 10^{3} t\right)
$$

(b) [25 marks] Compute the values of the circuit components. Justify all of your approximations and assumptions. Provide a rough sketch of the signal at the output of the detector.

Answer:

The output voltage of the detector, when it goes from one peak at voltage v_{1} to the next when it intersects the modulated carrier at voltage v_{2} after approximately half a period $T_{0}=\frac{T}{2}=0.5 \mathrm{~ms}$ of the carrier, is given by:

$$
v_{2} \cong v_{1} e^{-T_{0} / R C}
$$

Since the time constant $\tau=R C$ of the detector should be large with respect to $T_{0}=0.5 \mathrm{~ms}$, we can use a first-order approximation of the exponential such that

$$
v_{2} \cong v_{1}\left(1-T_{0} / R C\right)
$$

This is a line of negative slope $-\frac{v_{1}}{R C}$ between the initial voltage v_{1} and the final voltage v_{2} so that

$$
\frac{v_{2}-v_{1}}{T_{0}} \cong-v_{1} / R C
$$

This slope must be more negative than the maximum negative slope of the envelope of $y(t)$, which is maximized as follows:

$$
\min _{t} \frac{d(0.5 x(t))}{d t}=-50
$$

Taking the worst-case $v_{1}=0.5$, we must have

$$
-\frac{0.5}{R C}<-50 \Leftrightarrow R C<\frac{0.5}{50}=0.01
$$

We could take $R=5 k \Omega, C=1 \mu F$ to get $R C=0.005$.

Problem 2 (30 marks)

Consider the DLTI system

with transfer function $H(z)=\frac{1-0.9 z^{-1}}{z^{-2}(z-0.4)}$.
(a) [8 marks] Sketch the pole-zero plot of the system.

Answer:

$$
H(z)=\frac{z^{2}-0.9 z}{(z-0.4)}=\frac{z(z-0.9)}{z-0.4}
$$

pole at 0.4 and infinity, zeros at 0 and 0.9 .

(b) [5 marks] Find the ROC that makes this system stable.

Answer:
For stability, the ROC must include the unit circle, so it is $|z|>0.4$, excluding infinity.
(c) [5 marks] Is the system causal with the ROC that you found in (b)? Justify your answer.

Answer:

For the system to be causal, we must have $\lim _{z \rightarrow \infty} H(z)<\infty$, which is not the case here. Hence the system is not causal.
(d) [12 marks] Suppose that $H\left(e^{j \omega}\right)$ is bounded for all frequencies. Calculate the response of the system $y[n]$ to the input $x[n]=u[n]$.

Answer:
This means that the ROC is chosen as $|z|>0.4$.
We have $X(z)=\frac{1}{1-z^{-1}},|z|>1$, and

$$
Y(z)=H(z) U(z)=\frac{z^{2}(z-0.9)}{(z-0.4)(z-1)}=\frac{z\left(1-0.9 z^{-1}\right)}{\left(1-0.4 z^{-1}\right)\left(1-z^{-1}\right)}=z[\underbrace{\frac{5 / 6}{1-0.4 z^{-1}}}_{|z|>0.4}+\underbrace{\frac{1 / 6}{1-z^{-1}}}_{|z|>1}]
$$

so $y[n]=\frac{5}{6}(-0.4)^{n+1} u[n+1]+\frac{1}{6} u[n+1]$

Problem 3 (40 marks)

The SSB modulator shown below produces a signal that must be demodulated in discrete-time.

The modulating signal has a Fourier transform as shown below, and the carrier frequency is $\omega_{c}=2000 \pi \mathrm{rd} / \mathrm{s}$.

$$
X(j \omega)
$$

ω

Suppose the system is entirely noise-free so that an antialiasing filter is not required. The discrete-time demodulator is shown below. The ideal lowpass filter has unity gain and cutoff $\Omega_{l p}$.

(a) [10 marks] Sketch the spectra $Y_{1}(j \omega), Y_{2}(j \omega)$ and $Y(j \omega)$ of the corresponding signals in the SSB modulator.

Answer:
This is an upper SSB-AM modulator.

where $\omega_{c}=2000 \pi, \omega_{M}=20 \pi$.
(b) [20 marks] Assuming that $N_{1}=N_{2}=1$ (no decimation/upsampling), find the minimum sampling frequency ω_{s} that satisfies the sampling theorem with respect to the bandwidth of the modulated signal and that will allow perfect recovery of the modulating signal $\tilde{x}(t)=x(t)$. Give the corresponding DT demodulation frequency Ω_{c} and filter cutoff frequency $\Omega_{l p}$. Sketch the spectra $Y_{d}\left(e^{j \Omega}\right), V_{d}\left(e^{j \Omega}\right)$ and $\tilde{X}_{d}\left(e^{j \Omega}\right)$ of the corresponding signals in the demodulator for the sampling frequency that you found. Indicate the important frequencies and magnitudes on your sketches.

Answer:

Minimum $\omega_{s}=2\left(\omega_{c}+\omega_{m}\right)=4040 \pi$. Thus the sampling period is
$T=\frac{2 \pi}{4040 \pi}=\frac{1}{2020}=0.000495$. Demodulation frequency is therefore
$\Omega_{c}=T \omega_{c}=\frac{2000 \pi}{2020}=0.9901 \pi$ and the filter cutoff should be at $\Omega_{l p}=0.01 \pi$.

$$
\tilde{V}_{d}\left(e^{j \Omega}\right)=\tilde{W}_{d}\left(e^{j \Omega}\right)=\tilde{X}_{d}\left(e^{j \Omega}\right)
$$

(c) [10 marks] Using the same parameters as in (b), except for $N_{1}=4, N_{2}=2$, sketch the spectra $W_{d}\left(e^{j \Omega}\right), \tilde{X}_{d}\left(e^{j \Omega}\right)$ and $\tilde{X}(j \omega)$.

Answer:

