Sample Final Exam (finals03)
 Covering Chapters 10-17 of Fundamentals of Signals \& Systems

Problem 1 (25 marks)

Consider the discrete-time system shown below, where $\downarrow N$ represents decimation by N. This system transmits a signal $x[n]$ coming in at 1000 samples/s over two low-bit-rate channels.

Numerical values:
lowpass filters' cutoff frequencies $\omega_{c l p 1}=\omega_{c l p 2}=\frac{\pi}{2}$,
highpass filter's cutoff frequency $\omega_{c h p}=\frac{\pi}{2}$,
signal's spectrum over $[-\pi, \pi]: X\left(e^{j \omega}\right)=\left\{\begin{array}{l}1-\frac{4}{3 \pi}|\omega|,|\omega| \leq \frac{3 \pi}{4} \\ 0, \quad \frac{3 \pi}{4}<|\omega|<\pi\end{array}\right.$.
(a) [7 marks] Sketch the spectra $X\left(e^{j \omega}\right), X_{1}\left(e^{j \omega}\right), X_{2}\left(e^{j \omega}\right), W_{2}\left(e^{j \omega}\right)$, indicating the important frequencies and magnitudes.

(b) [10 marks] Let the decimation factors be $N_{1}=2$ and $N_{2}=4$. Sketch the corresponding spectra $V_{1}\left(e^{j \omega}\right), X_{2}\left(e^{j \omega}\right), V_{2}\left(e^{j \omega}\right)$, indicating the important frequencies and magnitudes. Assuming for the moment that $v_{1}[n], v_{2}[n]$ are quantized using 16-bit quantizers, find the bit rate of each channel, and the total bit rate. How would this compare to the bit rate for of a direct transmission of $x[n]$ using a 16-bit quantizer?

Answer:

After sampling in decimation operation: $\quad W_{2 p}\left(e^{j \omega}\right)$

With $N_{1}=2$, the first channel transmits at a bit rate of:
$\frac{1000}{2}$ samples $/ \mathrm{s} \times 16$ bits $/$ sample $=8000 \mathrm{bits} / \mathrm{s}$
And with $N_{2}=4$, the second channel transmits at a bit rate of:

$$
\frac{1000}{4} \text { samples } / \mathrm{s} \times 16 \mathrm{bits} / \mathrm{sample}=4000 \mathrm{bits} / \mathrm{s}
$$

Thus, the total bit rate is $12000 \mathrm{bits} / \mathrm{s}$.
A direct transmission of the signal would require a bit rate of 1000 samples $/ \mathrm{s} \times 16 \mathrm{bits} / \mathrm{sample}=16000 \mathrm{bits} / \mathrm{s}$
(c) [8 marks] Design the receiver system (draw its block diagram) such that $y[n]=x[n]$ (assume that there is no quantization of the signals.) You can use upsamplers (symbol $\{\uparrow N\}_{l p}$, with embedded ideal lowpass filters of cutoff frequency $\frac{\pi}{N}$ and gain N), synchronous demodulators, ideal filters and summing junctions. Sketch the spectra of all signals in your receiver.

Answer:

Problem 2 (20 marks)

You are the engineer in charge of the design of a rocket's guidance control system so that the rocket can track a desired pitch angle trajectory $\alpha_{\text {des }}(t)$ in a vertical plane during the take-off phase. The transfer function from the rocket's thrust vector angle command with respect to its longitudinal axis, call it $\theta(t)$, to the angle between the rocket's pitch angle $\alpha(t)$ (angle between the longitudinal axis and the inertial vertical axis), is given by $G(s):=\frac{\hat{\alpha}(s)}{\hat{\theta}(s)}=\frac{1}{s\left(\frac{1}{9} s^{2}+\frac{2}{3} s+1\right)}$.

(a) [8 marks] Suppose that you decide to use a pure gain $K \in \mathbb{R}$ as a feedback controller. Sketch the Bode plot of the loop gain $L(s)$ and its Nyquist plot for $K=1$, and use the Nyquist criterion to determine the range of $K>0$ for which the rocket will be stable.
(b) [8 marks] Compute the phase margin of the closed-loop system for $K=1$. Assuming that the controller would be implemented on earth, what would be the longest communication delay that would not destabilize the control system?

Answer:
Loop gain: $L(s)=\frac{1}{s\left(\frac{1}{9} s^{2}+\frac{2}{3} s+1\right)}$

Assuming that the Nyquist contour is indented so as to include the pole at 0 , then the Nyquist criterion states that the number of counterclockwise encirclements of the critical point $-1 / K$ should be equal to 1 . Note that there is already one counterclockwise encirclement at infinity due to the indentation around the pole $s=0$, so the "visible" part of the Nyquist plot of $L(j \omega)$ should leave the critical point to its left. On the Bode plot, this means that the gain should be smaller than OdB at frequencies where the phase crosses the -180deg line. We can see on the Bode plot above that the gain is approximately -15 dB at that point, therefore the closed-loop system

Phase margin:
The crossover frequency is approximately $\omega_{c o}=1 \mathrm{rd} / \mathrm{s}$. The phase margin is given by:
$\angle L\left(j \omega_{c o}\right) \cong-130^{\circ} \Rightarrow \phi_{m}=50^{\circ}$. From the broken line approximation, we find a phase margin of $\angle L\left(j \omega_{c o}\right) \cong-140^{\circ} \Rightarrow \phi_{m}=40^{\circ}$. Using the latter, we compute the maximum time-delay that can be tolerated:
$\omega_{c o} \tau=\frac{\pi}{180} \phi_{m}$
$\Rightarrow \tau=\frac{\pi}{180 \omega_{c o}} \phi_{m}=\frac{40 \pi}{180 \cdot 10}=0.0698 \mathrm{~s}$
(c) [4 marks] Compute the sensitivity function of the system and give the steady-state pitch angle error to a desired pitch angle step of 30 degrees on the output.
Answer:

$$
S(s)=\frac{1}{1+L(s)}=\frac{1}{1+\frac{1}{s\left(\frac{1}{9} s^{2}+\frac{2}{3} s+1\right)}}=\frac{s\left(\frac{1}{9} s^{2}+\frac{2}{3} s+1\right)}{s\left(\frac{1}{9} s^{2}+\frac{2}{3} s+1\right)+1}
$$

The Laplace transform of the error signal is
$\hat{e}(s)=\frac{1}{S} S(s)$, and from the final value theorem, we have $\lim _{t \rightarrow+\infty} e(t)=S(0)=0$.
Therefore, the steady-state error to a 30deg step is 0 deg, i.e., the rocket tracks the trajectory perfectly.

Problem 3 (15 marks)

Discrete-time AM-SSB modulator
You have to design an upper SSB modulator in discrete-time as an implementation of the continuoustime modulator shown below.

The modulating signal has a Fourier transform as shown below, and the carrier frequency is $\omega_{c}=2000000 \pi \mathrm{rd} / \mathrm{s}$.

$X(j \omega)$

ω

Design the modulation system (with ideal components) for the slowest sampling rate. Find the ideal phase-shift filter $H_{d}\left(e^{j \Omega}\right)$ and compute its impulse response $h_{d}[n]$. Compute the frequency Ω_{c}. Sketch the spectra $X\left(e^{j \Omega}\right), Y_{1}\left(e^{j \Omega}\right), Y_{2}\left(e^{j \Omega}\right), Y\left(e^{j \Omega}\right)$. Explain how you could implement an approximation to this ideal filter, and describe modifications to the overall system so that it would work in practice.

Answer:
First, the ideal phase-shift filter should have the following frequency response:

$$
H_{d}\left(e^{j \Omega}\right)=\left\{\begin{aligned}
j, & 0<\Omega<\pi \\
-j, & -\pi<\Omega<0
\end{aligned}\right.
$$

The inverse FT yields:

$$
\begin{aligned}
h_{d}[n] & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} H_{d}\left(e^{j \Omega}\right) e^{j \Omega n} d \Omega \\
& =\frac{1}{2 \pi} \int_{-\pi}^{0}-j e^{j \Omega n} d \Omega+\frac{1}{2 \pi} \int_{0}^{\pi} j e^{j \Omega n} d \Omega \\
& =\frac{-j}{2 \pi} \frac{1}{j n}\left[e^{j \Omega n}\right]_{-\pi}^{0}+\frac{j}{2 \pi} \frac{1}{j n}\left[e^{j \Omega n}\right]_{0}^{\pi} . \\
& =\frac{-1}{2 \pi n}\left[1-e^{-j \pi n}\right]+\frac{1}{2 \pi n}\left[e^{j \pi n}-1\right] \\
& =\frac{1}{\pi n}\left[(-1)^{n}-1\right]
\end{aligned}
$$

To compute the slowest sampling frequency, we start from the desired upper SSB modulated signal at the output, whose bandwidth is $\omega_{M}=2004000 \pi$ which should correspond to $\Omega=\pi$. Thus, we can compute the sampling period from the relationship $\frac{\Omega}{T}=\omega \Rightarrow \frac{\pi}{\omega_{M}}=T$
So $T=4.99 \times 10^{-7} s$. The DT carrier frequency is then:

$$
\Omega_{c}=\omega_{c} T \Rightarrow \omega_{c} \frac{\pi}{\omega_{M}}=2000000 \pi \frac{\pi}{2004000 \pi}=\frac{500 \pi}{501}=3.1353
$$

This system could be implemented in practice using an FIR approximation to the ideal phase shift filter. Starting from $h_{d}[n]$, a windowed impulse response of length $\mathrm{M}+1$ time delayed by $\mathrm{M} / 2$ to make
it causal would work. However, the resulting delay of M/2 samples introduced in the lower path of the modulator should be balanced out by the introduction of an equivalent delay $z^{-M / 2}$ in the upper path.

Problem 4 (20 marks)

The system shown below demodulates the noisy modulated continuous-time signal $y_{n}(t)=y(t)+n(t)$ composed of the sum of:

- signal $y(t)$ which is an upper single-sideband, suppressed carrier amplitude modulation (SSB/SC-AM) of $x(t)$ (assume for $Y(j \omega)$ a magnitude of one half that of $X(j \omega)$),
- a noise signal $n(t)$.

The carrier signal is $\cos \left(\omega_{c} t\right)$ where $\omega_{c}=98000 \pi \mathrm{rd} / \mathrm{s}$.
The antialiasing filter $H_{a}(j \omega)$ is a perfect unity-gain lowpass filter with cutoff frequency ω_{a}.

The modulating (or message) signal $x(t)$ has spectrum $X(j \omega)$ as shown below. The spectrum $N(j \omega)$ of the noise signal is also shown.

$N(j \omega)$

(a) [6 marks] Find the minimum antialiasing filter's cutoff frequency ω_{a} that will avoid any unrepairable distortion of the modulated signals due to the additive noise $n(t)$. Sketch the spectra $Y_{n}(j \omega)$ and $W(j \omega)$ of signals $y_{n}(t)$ and $w(t)$ for the frequency ω_{a} that you found. Indicate the important frequencies and magnitudes on your sketch.

Answer:
Minimum $\omega_{a}=100000 \pi$.

$$
Y_{n}(j \omega)
$$

(b) [14 marks] Find the minimum sampling frequency $\omega_{s}=\frac{2 \pi}{T}$ and its corresponding sampling period T that would satisfy the sampling theorem, i.e., that would allow perfect reconstruction of the modulated signal. Give the corresponding cutoff frequency Ω_{1} of the perfect lowpass filter and its gain K_{1} so that $\tilde{x}(t)=x(t)$, and find the demodulation frequency Ω_{c}. Using these frequencies, sketch the spectra $W_{d}\left(e^{j \Omega}\right), V_{d}\left(e^{j \Omega}\right), X_{d}\left(e^{j \Omega}\right)$, and $\tilde{X}(j \omega)$.

Answer:
$\omega_{s}=2 \omega_{a}=200000 \pi, T=\frac{2 \pi}{\omega_{s}}=\frac{1}{100000}=10^{-5}$
Demodulation frequency: $\Omega_{c}=98000 \pi T=0.98 \pi$. Cutoff frequencies: $\Omega_{1}=2000 \pi T=0.02 \pi$.
The lowpass filter must have a gain of $K_{1}=4$:

Problem 5 (20 marks)

The causal continuous-time LTI system given by its transfer function $G(s)=\frac{s}{(s+1)(s+2)}$ is discretized with sampling period $T=0.1 \mathrm{~s}$ for simulation purposes. The "c2d" transformation is used. (a) [4 marks] Find a state-space realization of the system.

Answer:

$$
G(s)=\frac{s}{(s+1)(s+2)}=\frac{s}{s^{2}+3 s+2}
$$

The observable canonical state-space realization is given by:

$$
\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
0 & 1 \\
-2 & -3
\end{array}\right]}_{A}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\underbrace{\left[\begin{array}{l}
0 \\
1
\end{array}\right]}_{B} u,
$$

and the output equation is

$$
y=\underbrace{\left[\begin{array}{ll}
0 & 1
\end{array}\right]}_{C}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] .
$$

and, $D=0$.
(b) [10 marks] Compute the discrete-time state-space system $\left(A_{c 2 d}, B_{c 2 d}, C_{c 2 d}, D_{c 2 d}\right)$ for $G(s)$ and its associated transfer function $G_{c 2 d}(z)$, specifying its ROC. Sketch the pole zero plot of $G_{c 2 d}(z)$.
Answer:
The A matrix is first diagonalized:

$$
A=\left[\begin{array}{cc}
0 & 1 \\
-2 & -3
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
1 & 1 \\
-1 & -2
\end{array}\right]}_{W} \underbrace{\left[\begin{array}{cc}
-1 & 0 \\
0 & -2
\end{array}\right]}_{\Lambda} \underbrace{\left[\begin{array}{cc}
1 & 1 \\
-1 & -2
\end{array}\right]^{-1}}_{W}
$$

Discretized state-space system using "c2d":

$$
\begin{aligned}
& A_{d}=e^{A T}=W e^{\Lambda T} W^{-1}=\left[\begin{array}{cc}
1 & 1 \\
-1 & -2
\end{array}\right]\left[\begin{array}{cc}
e^{-0.1} & 0 \\
0 & e^{-0.2}
\end{array}\right]\left[\begin{array}{cc}
2 & 1 \\
-1 & -1
\end{array}\right] \\
& =\left[\begin{array}{cc}
1 & 1 \\
-1 & -2
\end{array}\right]\left[\begin{array}{cc}
2 e^{-0.1} & e^{-0.1} \\
-e^{-0.2} & -e^{-0.2}
\end{array}\right]=\left[\begin{array}{cc}
2 e^{-0.1}-e^{-0.2} & e^{-0.1}-e^{-0.2} \\
-2 e^{-0.1}+2 e^{-0.2} & -e^{-0.1}+2 e^{-0.2}
\end{array}\right] \\
& =\left[\begin{array}{cc}
0.990944 & 0.086107 \\
-0.17221 & 0.73262
\end{array}\right] \\
& B_{d}:=A^{-1}\left[e^{A T}-I_{n}\right] B=\left[\begin{array}{cc}
-3 / 2 & -1 / 2 \\
1 & 0
\end{array}\right]\left[\begin{array}{cc}
2 e^{-0.1}-e^{-0.2}-1 & e^{-0.1}-e^{-0.2} \\
-2 e^{-0.1}+2 e^{-0.2} & -e^{-0.1}+2 e^{-0.2}-1
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
& =\left[\begin{array}{cc}
-3 / 2 & -1 / 2 \\
1 & 0
\end{array}\right]\left[\begin{array}{c}
e^{-0.1}-e^{-0.2} \\
-e^{-0.1}+2 e^{-0.2}-1
\end{array}\right]=\left[\begin{array}{c}
-e^{-0.1}+1 / 2 e^{-0.2}+1 / 2 \\
e^{-0.1}-e^{-0.2}
\end{array}\right] \\
& =\left[\begin{array}{c}
0.0045280 \\
0.086107
\end{array}\right] \\
& C_{d}:=C=\left[\begin{array}{ll}
0 & 1
\end{array}\right] \\
& D_{d}:=D=1
\end{aligned}
$$

transfer function:

$$
\begin{aligned}
G_{c 2 d}(z) & =C\left(z I_{n}-A\right)^{-1} B+D \\
& =\left[\begin{array}{ll}
0 & 1
\end{array}\right]\left[\begin{array}{cc}
\mathrm{z}-0.990944 & -0.086107 \\
0.17221 & \mathrm{z}-0.73262
\end{array}\right]^{-1}\left[\begin{array}{c}
0.0045280 \\
0.086107
\end{array}\right] \\
& =\frac{1}{(\mathrm{z}-0.990944)(\mathrm{z}-0.73262)+0.17221(0.086107)}\left[\begin{array}{ll}
0 & 1
\end{array}\right]\left[\begin{array}{cc}
\mathrm{z}-0.73262 & 0.086107 \\
-0.17221 & \mathrm{z}-0.990944
\end{array}\right]\left[\begin{array}{c}
0.0045280 \\
0.086107
\end{array}\right] \\
& =\frac{0.086107 z-0.086107}{z^{2}-1.72356 z+0.74081}=\frac{0.086107(z-1)}{(z-0.90484)(z-0.81872)},|z|>0.90484
\end{aligned}
$$

(c) [6 marks] Simulate the unit step response of $G(s)$ by computing recursively the first 6 values (for $n=0, \ldots, 5)$ of the unit step response of the difference equation corresponding to $G_{c 2 d}(z)$. Also find the settling value of the step response by applying the final value theorem to $G_{c 2 d}(z)$.

Answer:

$$
\begin{aligned}
G_{c 2 d}(z) & =\frac{0.086107 z-0.086107}{z^{2}-1.72356 z+0.74081} \\
& =\frac{0.086107 z^{-1}-0.086107 z^{-2}}{1-1.72356 z^{-1}+0.74081 z^{-2}}
\end{aligned}
$$

Corresponding difference equation:

$$
y[n]=1.72356 y[n-1]-0.74081 y[n-2]+0.086107 x[n-1]-0.086107 x[n-2]
$$

Step response:

$$
\begin{aligned}
y[0] & =1.72356(0)-0.74081(0)+0.086107(0)-0.086107(0) \\
& =0 \\
y[1] & =1.72356(0)-0.74081(0)+0.086107(1)-0.086107(0) \\
& =0.086107 \\
y[2] & =1.72356(0.086107)-0.74081(0)+0.086107(1)-0.086107(1) \\
& =0.1484 \\
y[3] & =1.72356(0.1484)-0.74081(0.086107)+0.086107(1)-0.086107(1) \\
& =0.1920 \\
y[4] & =1.72356(0.1920)-0.74081(0.1484)+0.086107(1)-0.086107(1) \\
& =0.2210 \\
y[5] & =1.72356(0.2210)-0.74081(0.1920)+0.086107(1)-0.086107(1) \\
& =0.2386
\end{aligned}
$$

Final value: $y[+\infty]=\lim _{z \rightarrow 1}\left(1-z^{-1}\right) \frac{G_{c 2 d}(z)}{\left(1-z^{-1}\right)}=G_{c 2 d}(1)=0$

END OF EXAMINATION

