Sample Midterm Test 1 (mt1s02)

Covering Chapters 1-3 of Fundamentals of Signals \& Systems

Problem 1 (30 marks)

Consider the LTI system initially at rest shown below:

Where the differential system S_{3} is causal, and the impulse responses $h_{1}(t)$ and $h_{2}(t)$ are as shown below.

(a) [25 marks] Compute and sketch the overall impulse response $h(t)$ of the system S, i.e., from $x(t)$ to $y(t)$. Justify all calculations.

Answer:
First, we compute the impulse response $h_{3}(t)$ of S_{3}.

$$
S_{3}: \quad 2 \frac{d z(t)}{d t}+z(t)=w(t) .
$$

Step 1: Set up the problem of calculating the impulse response of the differential equation.

$$
2 \frac{d h_{3}(t)}{d t}+h_{3}(t)=\delta(t)
$$

Step 2: Find the initial condition of the homogeneous equation at $t=0^{+}$by integrating from $t=0^{-}$to $t=0^{+}$.

$$
\int_{0^{-}}^{0^{+}} 2 \frac{d h_{3}(\tau)}{d t} d \tau=2 h_{3}\left(0^{+}\right)=1
$$

hence $h_{3}\left(0^{+}\right)=\frac{1}{2}$ is our initial condition for the homogeneous equation

$$
2 \frac{d h_{3}(t)}{d t}+h_{3}(t)=0 .
$$

Step 3: The characteristic polynomial is $p(s)=2 s+1$ and it has one zero at $s=\frac{-1}{2}$, which means that the homogeneous response has the form $h_{3}(t)=A e^{\frac{-t}{2}}$ for $t>0$. The initial condition allows us to determine the constant A :

$$
\begin{aligned}
& h_{3}\left(0^{+}\right)=A=\frac{1}{2} \\
& h_{3}(t)=\frac{1}{2} e^{\frac{-t}{2}} u(t)
\end{aligned}
$$

Next, we compute the impulse response of the upper cascade of systems S_{1}, S_{3}, which is given by $h_{1}(t) * h_{3}(t)$:

SOLUTION 1 for $h_{1}(t) * h_{3}(t)$: Let's time-reverse and shift the impulse response $h_{1}(t)$. The intervals of interest are:
$t<0$: no overlap so $h_{1}(t) * h_{3}(t)=0$.
$0 \leq t<1$: overlap over $0<\tau<t$:
$h_{1}(t) * h_{3}(t)=\int_{0}^{t} h_{3}(\tau) d \tau=\frac{1}{2} \int_{0}^{t} e^{-\frac{1}{2} \tau} d \tau=\left[-e^{-\frac{1}{2} \tau}\right]_{0}^{t}=\left(1-e^{-\frac{1}{2} t}\right)$.
$t \geq 1$: overlap over $t-1<\tau<t$:
$h_{1}(t) * h_{3}(t)=\int_{t-1}^{t} h_{3}(\tau) d \tau=\frac{1}{2} \int_{t-1}^{t} e^{-\frac{1}{2} \tau} d \tau=\left[-e^{-\frac{1}{2} \tau}\right]_{t-1}^{t}=\left(e^{-\frac{1}{2}(t-1)}-e^{-\frac{1}{2} t}\right)=\left(e^{\frac{1}{2}}-1\right) e^{-\frac{1}{2} t}$
Finally, piecing all three intervals together, we get:

$h(t)=h_{1}(t) * h_{3}(t)+h_{2}(t)=\left\{\begin{array}{cc}0, & t<-1 \\ 1, & -1 \leq t<0 \\ 1-e^{-\frac{1}{2} t}, & 0 \leq t<1 \\ \binom{\frac{1}{2}}{e^{2}} e^{-\frac{1}{2} t} & t \geq 1\end{array}\right.$

(b) [5 marks] Is the overall system S in (a) stable? Is it causal? Justify your answers.

Answer:
No, it is not causal as its impulse response $h(t) \neq 0$ at negative times.
Yes it is BIBO stable, because the impulse response is absolutely integrable, as shown below. First the part of $h(t)$ between -1 and 1 has a finite area, so we only need to check for $t>1$:

$$
\begin{aligned}
\int_{1}^{+\infty}|h(t)| d t & =\left(1-e^{-\frac{1}{2}}\right) \int_{1}^{+\infty}\left|e^{-\frac{1}{2} t}\right| d t=\left(e^{\frac{1}{2}}-1\right) \int_{1}^{+\infty} e^{-\frac{1}{2} t} d t \\
& =\left(e^{\frac{1}{2}}-1\right)\left[-2 e^{-\frac{1}{2} t}\right]_{1}^{+\infty}=2 e^{-\frac{1}{2}}\left(e^{\frac{1}{2}}-1\right)=2\left(1-e^{-\frac{1}{2}}\right)<+\infty
\end{aligned}
$$

The system is noncausal because $h(t) \neq 0, t<0$.

Problem 2 (25 marks)

Determine if the discrete-time system described by $y[n]=\sum_{k=-\infty}^{n} \frac{x[k]}{n-k}$ is
(a) [5 marks] Time-invariant
(b) [5 marks] Linear
(c) [5 marks] Stable
(d) [5 marks] Causal

Justify your answers.
Answer:
(a) It is time-invariant. Let $y_{1}[n]=S x[n-N]=\sum_{k=-\infty}^{n} \frac{x[k-N]}{n-k}$. We have

$$
y[n-N]=\sum_{k=-\infty}^{n-N} \frac{x[k]}{n-N-k}=\sum_{m=-\infty}^{n} \frac{x[m-N]}{n-m}=y_{1}[n] .
$$

(b) It is linear.

Principle of Superposition, let $y_{1}[n]=S x_{1}[n]=\sum_{k=-\infty}^{n} \frac{x_{1}[k]}{n-k}$ and $y_{1}[n]=S x_{2}[n]=\sum_{k=-\infty}^{n} \frac{x_{2}[k]}{n-k}$.
Then for $x[n]=a x_{1}[n]+b x_{2}[n]$, we have

$$
\begin{aligned}
y[n] & =\sum_{k=-\infty}^{n} \frac{a x_{1}[k]+b x_{2}[k]}{n-k}=a \sum_{k=-\infty}^{n} \frac{x_{1}[k]}{n-k}+b \sum_{k=-\infty}^{n} \frac{x_{2}[k]}{n-k} \\
& =a y_{1}[n]+b y_{2}[n]
\end{aligned}
$$

(c) It is unstable: for a given bound $|x[n]|<B$, the output can not be bounded for n negative going to $-\infty$. For example, $x_{1}[n]=1$ is a bounded input leading to the output $y[n]=\sum_{k=-\infty}^{n} \frac{1}{n-k}=\sum_{m=0}^{+\infty} \frac{1}{m}=+\infty$ which is unbounded.
(d) It is causal: To compute $y[n]$, the system only needs past and current values of the input..

Problem 3 (20 marks)

Compute the response $y[n]$ of the discrete-time LTI system described by its impulse response $h[n]=(-2)^{n} u[-n-1]+(0.8)^{n} u[n]$ to the input signal $x[n]=u[n]-u[n-4]$. Sketch $x[n], h[n]$ and $y[n]$.

We break down the problem into 2 subproblems, each with 3 intervals for n .
Let $h_{+}[n]=(0.8)^{n} u[n]$, and $h_{-}[n]=(-2)^{n} u[-n-1]$, so that

$$
y[n]=h_{+}[n] * x[n]+h_{-}[n] * x[n]=y_{+}[n]+y_{-}[n]
$$

Starting with $y_{+}[n]=h_{+}[n] * x[n]$:
For $n<0: x[n-k]$ is zero for $k>0$, hence $g[k]=h[k] x[n-k]=0 \forall k$ and $y[n]=0$.

For $0 \leq n \leq 3$: Then $g[k]=h[k] x[n-k] \neq 0$ for $k=0, \ldots, n$. We get

$$
y[n]=\sum_{k=0}^{n} h[k]=\sum_{k=0}^{n} 0.8^{k}=\frac{1-(0.8)^{n+1}}{1-0.8}=5\left[1-(0.8)^{n+1}\right]
$$

For $n>3$: Then $g[k]=h[k] x[n-k] \neq 0$ for $k=n-3, \ldots, n$. We get

$$
y[n]=\sum_{k=n-3}^{n} 0.8^{k}=\sum_{m=0}^{3} 0.8^{m+n-3}=0.8^{n-3} \frac{1-0.8^{4}}{1-0.8}=5\left[0.8^{-3}-0.8\right] 0.8^{n}
$$

Now for $y_{-}[n]=h_{-}[n] * x[n]$:
For $n>2: x[n-k]$ is zero for $k<0$, hence $g[k]=h[k] x[n-k]=0 \forall k$ and $y[n]=0$.

For $0 \leq n \leq 2$: Then $g[k]=h[k] x[n-k] \neq 0$ for $k=n-3, \ldots,-1$. We get
$y[n]=\sum_{k=n-3}^{-1} h[k]=\sum_{k=n-3}^{-1}(-2)^{k}=\sum_{m=0}^{2-n}(-2)^{m+n-3}=(-2)^{n-3} \frac{1-(-2)^{3-n}}{1-(-2)}=\frac{1}{3}\left[(-2)^{n-3}-1\right]$
For $n \leq-1$: Then $g[k]=h[k] x[n-k] \neq 0$ for $k=n-3, \ldots, n$. We get

$$
\begin{aligned}
y[n] & =\sum_{k=n-3}^{n}(-2)^{k}=\sum_{m=0}^{3}(-2)^{m+n-3}=(-2)^{n-3} \frac{1-(-2)^{4}}{1-(-2)} \\
& =\frac{1}{3}\left[(-2)^{-3}-(-2)\right](-2)^{n}=-\frac{5}{8}(-2)^{n}
\end{aligned}
$$

Combining the response, we find the output signal of the LTI system to be

$$
y[n]= \begin{cases}-\frac{5}{8}(-2)^{n}, & n \leq-1 \\ 5\left[1-(0.8)^{n+1}\right]+\frac{1}{3}\left[(-2)^{n-3}-1\right], & 0 \leq n \leq 2 \\ 5\left[0.8^{-3}-0.8\right] 0.8^{n}, & n \geq 3\end{cases}
$$

Which looks like this:
$y[n]$

Problem 4 (25 marks)

(a) [20 marks] Compute the impulse response $h[n]$ of the following causal LTI second-order difference system initially at rest:

$$
y[n]-0.8 \sqrt{2} y[n-1]=-0.64 y[n-2]+x[n-1]-x[n-2]
$$

Simplify your expression of $h[n]$ to obtain a real function of time.
Answer:

$$
y[n]-0.8 \sqrt{2} y[n-1]+0.64 y[n-2]=x[n-1]-x[n-2]
$$

Write:

$$
y[n]-0.8 \sqrt{2} y[n-1]+0.64 y[n-2]=\delta[n] .
$$

Initial conditions for the homogeneous equation for $n>0$ are $y[0]=1, y[-1]=0$.
characteristic polynomial and zeros:

$$
p(z)=z^{2}-0.8 \sqrt{2} z+0.64=\left(z-0.8 e^{j \frac{3 \pi}{4}}\right)\left(z-0.8 e^{-j \frac{3 \pi}{4}}\right)
$$

The zeros are $z_{1}=0.8 e^{j \frac{3 \pi}{4}}, z_{2}=0.8 e^{-j \frac{3 \pi}{4}}$.
The homogeneous response for $n>0$ is given by

$$
h_{a}[n]=A\left(0.8 e^{j \frac{3 \pi}{4}}\right)^{n}+B\left(0.8 e^{-j \frac{3 \pi}{4}}\right)^{n} .
$$

Use initial conditions to compute the coefficients A and B :

$$
\begin{aligned}
& h_{a}[-1]=0=A\left(0.8 e^{j \frac{3 \pi}{4}}\right)^{-1}+B\left(0.8 e^{-j \frac{3 \pi}{4}}\right)^{-1}=\frac{5}{4} e^{-j \frac{3 \pi}{4}} A+\frac{5}{4} e^{j \frac{3 \pi}{4}} B \\
& h_{a}[0]=1=A+B
\end{aligned}
$$

From the first equation, we get $B=-e^{j \frac{6 \pi}{4}} A=j A$, and from the second equation:
$A=\frac{1}{1+j}=\frac{1}{2}-\frac{1}{2} j$. Thus $B=\frac{1}{2}+\frac{1}{2} j$, and
the homogeneous response is

$$
\begin{aligned}
h_{a}[n] & =\left[\left(\frac{1}{2}-\frac{1}{2} j\right)\left(0.8 e^{j \frac{3 \pi}{4}}\right)^{n}+\left(\frac{1}{2}+\frac{1}{2} j\right)\left(0.8 e^{-j \frac{3 \pi}{4}}\right)^{n}\right] u[n] \\
& =\left[\left(\frac{1}{\sqrt{2}} e^{-j \frac{\pi}{4}}\right)\left(0.8 e^{j \frac{3 \pi}{4}}\right)^{n}+\left(\frac{1}{\sqrt{2}} e^{j \frac{\pi}{4}}\right)\left(0.8 e^{-j \frac{3 \pi}{4}}\right)^{n}\right] u[n] \\
& =2 \operatorname{Re}\left\{\left(\frac{1}{\sqrt{2}} e^{-j \frac{\pi}{4}}\right)\left(0.8 e^{j \frac{3 \pi}{4}}\right)^{n}\right\} u[n]=2 \frac{1}{\sqrt{2}}(0.8)^{n} \operatorname{Re}\left\{e^{j\left(\frac{3 \pi}{4} n-\frac{\pi}{4}\right)}\right\} u[n] \\
& =\sqrt{2}(0.8)^{n} \cos \left[\frac{3 \pi}{4} n-\frac{\pi}{4}\right] u[n]
\end{aligned}
$$

The impulse response is:

$$
\begin{aligned}
h[n] & =h_{a}[n-1]-h_{a}[n-2] \\
& =\sqrt{2}(0.8)^{n-1} \cos \left[\frac{3 \pi}{4}(n-1)-\frac{\pi}{4}\right] u[n-1]-\sqrt{2}(0.8)^{n-2} \cos \left[\frac{3 \pi}{4}(n-2)-\frac{\pi}{4}\right] u[n-2]
\end{aligned}
$$

(b) [5 marks] Compute the response $y[n]$ of the system in (a) to the input signal $x[n]$ shown below.

Answer:
The input signal is composed of two time-shifted impulses, i.e., $x[n]=\delta[n+1]-\delta[n-1]$, thus
$y[n]=h[n+1]-h[n-1]=\sqrt{2}(0.8)^{n} \cos \left[\frac{3 \pi}{4}(n)-\frac{\pi}{4}\right] u[n]-\sqrt{2}(0.8)^{n-1} \cos \left[\frac{3 \pi}{4}(n-1)-\frac{\pi}{4}\right] u[n-1]$
$-\sqrt{2}(0.8)^{n-2} \cos \left[\frac{3 \pi}{4}(n-2)-\frac{\pi}{4}\right] u[n-2]+\sqrt{2}(0.8)^{n-3} \cos \left[\frac{3 \pi}{4}(n-3)-\frac{\pi}{4}\right] u[n-3]$

