Sample Midterm Test 1 (mt1s01)

Covering Chapters 1-3 of Fundamentals of Signals \& Systems

Problem 1 (25 marks)

(a) [20 marks] Compute the output $y(t)$ of the continuous-time LTI system with impulse response $h(t)$ for an input signal $x(t)$ as depicted below.

Answer:
SOLUTION 1: Let's time-reverse and shift the impulse response. This way the integral will always be evaluated over $-2 \leq \tau \leq 0$ The intervals of interest are:
$t<-2$: overlap with the left, constant part of $h(\tau)$, so
$y(t)=\int_{-2}^{0} h(t-\tau) d \tau=\int_{-2}^{0} 1 d \tau=[\tau]_{-2}^{0}=2$.
$t>0$: overlap with the right, exponential part of $h(\tau)$, so

$$
\begin{aligned}
y(t) & =\int_{-2}^{0} h(t-\tau) d \tau=\int_{-2}^{0} e^{-(t-\tau)} d \tau=e^{-t} \int_{-2}^{0} e^{\tau} d \tau=e^{-t}\left[e^{\tau}\right]_{-2}^{0} \\
& =\left(1-e^{-2}\right) e^{-t}
\end{aligned}
$$

$-2<t<0$: overlap with both parts of $h(\tau)$.

$$
\begin{aligned}
y(t) & =\int_{-2}^{0} h(t-\tau) d \tau=\int_{-2}^{t} e^{-(t-\tau)} d \tau+\int_{t}^{0} 1 d \tau=e^{-t} \int_{-2}^{t} e^{\tau} d \tau-t \\
& =e^{-t}\left[e^{\tau}\right]_{-2}^{t}-t=\left[1-e^{-(t+2)}\right]-t
\end{aligned}
$$

Finally, piecing all three intervals together, we get:
$y(t)=\left\{\begin{array}{cc}2 & t<-2 \\ {\left[1-e^{-(t+2)}\right]-t} & -2 \leq t<0 \\ \left(1-e^{-2}\right) e^{-t} & t \geq 0\end{array}\right.$

SOLUTION 2: Let's break down the impulse response into two parts and use linear superposition. $h(t)=h_{1}(t)+h_{2}(t), h_{1}(t)=e^{-t} u(t), h_{2}(t)=u(-t)$.
Response of $h_{1}(t)$: the intervals are
$t<-2$: no overlap with $x(\tau)$, so $y_{1}(t)=0$.
$-2<t<0$: overlap with $x(\tau)$ for $-2 \leq \tau \leq t$.

$$
\begin{aligned}
y_{1}(t) & =\int_{-2}^{t} h_{1}(t-\tau) d \tau=\int_{-2}^{t} e^{-(t-\tau)} d \tau=e^{-t} \int_{-2}^{t} e^{\tau} d \tau \\
& =e^{-t}\left[e^{\tau}\right]_{-2}^{t}=\left(1-e^{-(t+2)}\right)
\end{aligned}
$$

$t>0$: complete overlap with $x(\tau)$, so

$$
\begin{aligned}
y_{1}(t) & =\int_{-2}^{0} h_{1}(t-\tau) d \tau=\int_{-2}^{0} e^{-(t-\tau)} d \tau=e^{-t} \int_{-2}^{0} e^{\tau} d \tau=e^{-t}\left[e^{\tau}\right]_{-2}^{0} \\
& =\left[1-e^{-2}\right] e^{-t}
\end{aligned}
$$

Response of $h_{2}(t)$: the intervals are
$t<-2$: complete overlap with $x(\tau)$.
$y_{2}(t)=\int_{-2}^{0} h_{2}(t-\tau) d \tau=\int_{-2}^{0} 1 d \tau=2$
$-2<t<0$: overlap with $x(\tau)$ for $t \leq \tau \leq 0$.
$y_{2}(t)=\int_{t}^{0} h_{2}(t-\tau) d \tau=\int_{t}^{0} 1 d \tau=-t$
$t>0$: no overlap with $x(\tau)$, so $y_{2}(t)=0$.
Finally,
$y(t)=y_{1}(t)+y_{2}(t)=\left\{\begin{array}{cc}2 & t<-2 \\ \left(1-e^{-(t+2)}\right)-t & -2 \leq t<0 \\ {\left[1-e^{-2}\right] e^{-t}} & t \geq 0\end{array}\right.$
(b) [5 marks] Is the system in (a) stable? Is it causal? Justify your answers.

Answer:
No it is not BIBO stable, because the impulse response is not absolutely integrable, as shown below.

$$
\begin{aligned}
\int_{-\infty}^{+\infty}|h(t)| d t & =\int_{-\infty}^{+\infty}\left|e^{-t} u(t)+u(-t)\right| d t=\int_{-\infty}^{0} 1 d t+\int_{0}^{+\infty} e^{-t} d t \\
& =+\infty
\end{aligned}
$$

The system is noncausal because $h(t) \neq 0, t<0$.

Problem 2 (25 marks)

Consider the following first-order, causal LTI differential system S initially at rest:

$$
S: \quad \frac{d^{2} y(t)}{d t^{2}}+3 \frac{d y(t)}{d t}+2 y(t)=\frac{d}{d t} x(t)+2 x(t)
$$

(a) [20 marks] Compute and sketch the impulse response $h(t)$ of the system S.

Answer:
SOLUTION 1:

Step 1: Set up the problem to calculate the intermediate impulse response $h_{a}(t)$

$$
\frac{d^{2} h_{a}(t)}{d t^{2}}+3 \frac{d h_{a}(t)}{d t}+2 h_{a}(t)=\delta(t)
$$

Step 2: Find the initial condition of the corresponding homogeneous equation at $t=0^{+}$by integrating the above differential equation from $t=0^{-}$to $t=0^{+}$. Note that the impulse will be in the term $\frac{d^{2} h_{a}(t)}{d t^{2}}$, so $\frac{d h_{a}(t)}{d t}$ will have a finite jump at most, and $h_{a}(t)$ will be continuous. Thus we have

$$
\int_{0^{-}}^{0^{+}} \frac{d^{2} h_{a}(\tau)}{d \tau^{2}} d \tau=\frac{d h_{a}}{d \tau}\left(0^{+}\right)=1
$$

and $h_{a}\left(0^{+}\right)=0$. These are our initial conditions for the homogeneous equation for $t>0$

$$
\frac{d^{2} h_{a}(t)}{d t^{2}}+3 \frac{d h_{a}(t)}{d t}+2 h_{a}(t)=0
$$

Step 3: The characteristic polynomial is $p(s)=s^{2}+3 s+2$ and it has two zeros; one at $s_{1}=-1$ and one at $s_{2}=-2$, which means that the homogeneous response has the form
$h_{a}(t)=A e^{-t}+B e^{-2 t}$ for $t>0$. The initial condition allows us to determine the constants A and B :

$$
\begin{aligned}
& h_{a}\left(0^{+}\right)=A+B=0, \\
& \frac{d h_{a}}{d \tau}\left(0^{+}\right)=-A-2 B=1
\end{aligned}
$$

and we solve to get $A=1, B=-1$. Thus, $h_{a}(t)=e^{-t}-e^{-2 t}$ for $t>0$.

Step 4:

Finally, we apply the RHS of the differential equation:

$$
\begin{aligned}
h(t) & =\frac{d h_{a}(t)}{d t}+2 h_{a}(t) \\
& =\frac{d}{d t}\left[\left(e^{-t}-e^{-2 t}\right) u(t)\right]+2\left(e^{-t}-e^{-2 t}\right) u(t) \\
& =\left(-e^{-t}+2 e^{-2 t}\right) u(t)+(1-1) \delta(t)+2\left(e^{-t}-e^{-2 t}\right) u(t) \\
& =e^{-t} u(t)
\end{aligned}
$$

Sketch:

SOLUTION 2: (step response approach)

Step 1: Set up the problem to calculate the step response of the left-hand side

$$
\frac{d^{2} s_{a}(t)}{d t^{2}}+3 \frac{d s_{a}(t)}{d t}+2 s_{a}(t)=u(t)
$$

Step 2: Compute the step response as the sum of a forced response and a homogeneous response.
The characteristic polynomial is $p(s)=s^{2}+3 s+2$ and it has two zeros; one at $s_{1}=-1$ and one at $s_{2}=-2$, which means that the homogeneous response has the form $s_{a b}(t)=A e^{-t}+B e^{-2 t}$ for $t>0$.

We look for a particular solution of the form $s_{a p}(t)=K$ for $t>0$ when $x(t)=1$. We find

$$
s_{a p}(t)=\frac{1}{2} .
$$

Adding the homogeneous and particular solutions, we obtain the overall step response for $t>0$:

$$
s_{a}(t)=A e^{-t}+B e^{-2 t}+\frac{1}{2} .
$$

From initial rest, the initial conditions at $t=0^{-}$are $s_{a}\left(0^{-}\right)=0$ and $\frac{d s_{a}}{d t}\left(0^{-}\right)=0$. Thus,

$$
\begin{aligned}
& s_{a}(0)=0=A+B+\frac{1}{2} \\
& \frac{d s_{a}}{d t}\left(0^{+}\right)=-A-2 B=0
\end{aligned}
$$

and we obtain: $A=-1, B=\frac{1}{2}$.
Which means that the intermediate step response of the system is:

$$
s_{a}(t)=\left(-e^{-t}+\frac{1}{2} e^{-2 t}+\frac{1}{2}\right) u(t) .
$$

Step 3: Differentiating, we obtain the intermediate impulse response:

$$
h_{a}(t)=\frac{d}{d t} s_{a}(t)=\left(e^{-t}-e^{-2 t}\right) u(t)
$$

Step 4: Use the right-hand side of the differential equation

$$
\begin{aligned}
h(t) & =\frac{d h_{a}(t)}{d t}+2 h_{a}(t) \\
& =\frac{d}{d t}\left[\left(e^{-t}-e^{-2 t}\right) u(t)\right]+2\left(e^{-t}-e^{-2 t}\right) u(t) \\
& =\left(-e^{-t}+2 e^{-2 t}\right) u(t)+(1-1) \delta(t)+2\left(e^{-t}-e^{-2 t}\right) u(t) \\
& =e^{-t} u(t)
\end{aligned}
$$

Sketch:

(b) [5 marks] Compute and sketch the step response of the system.

Answer:
The step response of the system is the integral of the impulse response:
$s(t)=\int_{0}^{t} e^{-\tau} d \tau=-\left[e^{-t}-1\right] u(t)=\left[1-e^{-t}\right] u(t)$
Sketch:

Problem 3 (20 marks)

Determine if the discrete-time system described by $y[n]=\left(\frac{1}{2}\right)^{n} x[3 n+2]$ is
(a) [5 marks] Time-invariant
(b) [5 marks] Linear
(c) [5 marks] Stable
(d) [5 marks] Causal

Justify your answers.
Answer:
(a) It is not time-invariant. Let $y_{1}[n]=S x[n-N]=\left(\frac{1}{2}\right)^{n} x[3 n-N+2]$. It is easy to see that

$$
y_{1}[n] \neq y[n-N]=\left(\frac{1}{2}\right)^{n-N} x[3(n-N)+2]
$$

(b) It is linear.

Principle of Superposition, let $y_{1}[n]=S x_{1}[n]=\left(\frac{1}{2}\right)^{n} x_{1}[3 n+2]$ and

$$
y_{2}[n]=S x_{2}[n]=\left(\frac{1}{2}\right)^{n} x_{2}[3 n+2]
$$

Then for $x[n]=a x_{1}[n]+b x_{2}[n]$, we have

$$
\begin{aligned}
y[n] & =\left(\frac{1}{2}\right)^{n}\left(a x_{1}[3 n+2]+b x_{2}[3 n+2]\right)=a\left(\frac{1}{2}\right)^{n} x_{1}[3 n+2]+b\left(\frac{1}{2}\right)^{n} x_{2}[3 n+2] \\
& =a y_{1}[n]+b y_{2}[n]
\end{aligned}
$$

(c) It is unstable: for a given bound $|x[n]|<B$, the output can not be bounded for n negative going to $-\infty$. For example, $x_{1}[n]=1$ is a bounded input leading to the output $y_{1}[n]=S x_{1}[n]=\left(\frac{1}{2}\right)^{n}$ which is unbounded for negative times.
(d) It is not causal: To compute $y[0]$, the system needs the future value of the input $x[2]$.

Problem 4 (20 marks)

Compute the response $y[n]$ of the discrete-time LTI system described by its impulse response $h[n]=\left\{\begin{array}{cc}\alpha^{n}, & 0 \leq n \leq 6 \\ 0, & \text { otherwise }\end{array}\right.$ to the step input signal $x[n]=u[n]$. Give the numerical value of $y[100]$ for the case $\alpha=2$.

Answer:

We break down the problem into 3 intervals for n .

For $n<0: h[n-k]$ is zero for $\mathrm{k}>0$, hence $g[k]=h[k] x[n-k]=0 \forall k$ and $y[n]=0$.

For $0 \leq n \leq 6$: Then $g[k]=h[k] x[n-k] \neq 0$ for $k=0, \ldots, n$. We get

$$
y[n]=\sum_{k=0}^{n} g[k]=\sum_{k=0}^{n} \alpha^{k}=\frac{1-\alpha^{n+1}}{1-\alpha}
$$

For $n>6$: Then $g[k]=h[k] x[n-k] \neq 0$ for $k=0, \ldots, 6$. We get

$$
y[n]=\sum_{k=0}^{6} \alpha^{k}=\frac{1-\alpha^{7}}{1-\alpha}
$$

In summary, the output signal of the LTI system is

$$
y[n]= \begin{cases}0, & n<0 \\ \frac{1-\alpha^{n+1}}{1-\alpha}, & 0 \leq n \leq 6 \\ \frac{1-\alpha^{7}}{1-\alpha}, & n>6\end{cases}
$$

Which, for $\alpha>1$, looks something like this:

The numerical value of $y[100]$ for the case $\alpha=2$ is $y[100]=\frac{1-\alpha^{7}}{1-\alpha}=\frac{1-128}{-1}=127$

Problem 5 (10 marks)

Compute the impulse response $h[n]$ of the following causal LTI second-order difference system initially at rest:

$$
y[n]-y[n-1]+0.5 y[n-2]=x[n]
$$

Simplify your expression of $h[n]$ to obtain a real function of time.

Answer:

Write:

$$
y[n]-y[n-1]+0.5 y[n-2]=\delta[n] .
$$

Initial conditions for the homogeneous equation for $n>0$ are $y[0]=1, y[-1]=0$.
characteristic polynomial and zeros:

$$
p(z)=z^{2}-z+0.5=(z-0.5-j 0.5)(z-0.5+j 0.5)
$$

The zeros are $z_{1}=0.5+j 0.5=\frac{1}{\sqrt{2}} e^{j \frac{\pi}{4}}, \quad z_{2}=0.5-j 0.5=\frac{1}{\sqrt{2}} e^{-j \frac{\pi}{4}}$.

The homogeneous response for $n>0$ is given by

$$
h_{a}[n]=A\left(\frac{1}{\sqrt{2}} e^{j \frac{\pi}{4}}\right)^{n}+B\left(\frac{1}{\sqrt{2}} e^{-j \frac{\pi}{4}}\right)^{n}
$$

Use initial conditions to compute the coefficients A and B :

$$
\begin{aligned}
& h_{a}[-1]=0=A\left(\frac{1}{\sqrt{2}} e^{j \frac{\pi}{4}}\right)^{-1}+B\left(\frac{1}{\sqrt{2}} e^{-j \frac{\pi}{4}}\right)^{-1}=\sqrt{2} e^{-j \frac{\pi}{4}} A+\sqrt{2} e^{j \frac{\pi}{4}} B \\
& h_{a}[0]=1=A+B
\end{aligned}
$$

From the first equation, we get $A=-e^{j \frac{\pi}{2}} B=-j B$, and from the second equation:
$B=\frac{1}{1-j}=\frac{1}{2}+\frac{1}{2} j$. Thus $A=\frac{1}{2}-\frac{1}{2} j$, and
the homogeneous response is

$$
\begin{aligned}
h_{a}[n] & =\left[\left(\frac{1}{2}-\frac{1}{2} j\right)\left(\frac{1}{\sqrt{2}} e^{j \frac{\pi}{4}}\right)^{n}+\left(\frac{1}{2}+\frac{1}{2} j\right)\left(\frac{1}{\sqrt{2}} e^{-j \frac{\pi}{4}}\right)^{n}\right] u[n] \\
& =\left[\left(\frac{1}{\sqrt{2}} e^{-j \frac{\pi}{4}}\right)\left(\frac{1}{\sqrt{2}} e^{j \frac{\pi}{4}}\right)^{n}+\left(\frac{1}{\sqrt{2}} e^{j \frac{\pi}{4}}\right)\left(\frac{1}{\sqrt{2}} e^{-j \frac{\pi}{4}}\right)^{n}\right] u[n] \\
& =2 \operatorname{Re}\left\{\left(\frac{1}{\sqrt{2}} e^{-j \frac{\pi}{4}}\right)\left(\frac{1}{\sqrt{2}} e^{j \frac{\pi}{4}}\right)^{n}\right\} u[n]=2\left(\frac{1}{\sqrt{2}}\right)^{n+1} \operatorname{Re}\left\{e^{j \frac{\pi}{4}(n-1)}\right\} u[n] \\
& =\left(\frac{1}{\sqrt{2}}\right)^{n-1} \cos \left[\frac{\pi}{4}(n-1)\right] u[n]
\end{aligned}
$$

The impulse response is the same: $h[n]=h_{a}[n]=\left(\frac{1}{\sqrt{2}}\right)^{n-1} \cos \left[\frac{\pi}{4}(n-1)\right] u[n]$

