Sample Midterm Test 1 (mt1s00)

Covering Chapters 1-3 of Fundamentals of Signals \& Systems

Problem 1 (15 marks)

Determine if the discrete-time system described by $y[n]=\left\{\begin{array}{cc}(n+1) x[n], & x[n] \geq 0 \\ -(n+1) x[n], & x[n]<0\end{array}\right.$ is
(a) [5 marks] Time-invariant
(b) [5 marks] Linear
(c) [5 marks] Stable

Justify your answers.
Answers:
(a) It is not time-invariant. Let $y_{1}[n]=S x[n-N]=\left\{\begin{array}{cc}(n+1) x[n-N], & x[n-N] \geq 0 \\ -(n+1) x[n-N], & x[n-N]<0\end{array}\right.$. It is easy to see that $y_{1}[n] \neq y[n-N]=\left\{\begin{array}{cc}(n-N+1) x[n-N], & x[n-N] \geq 0 \\ -(n-N+1) x[n-N], & x[n-N]<0\end{array}\right.$.
(b) It is nonlinear.

Method 1: Principle of Superposition, let $y_{1}[n]=S x_{1}[n]=\left\{\begin{array}{cc}(n+1) x_{1}[n], & x_{1}[n] \geq 0 \\ -(n+1) x_{1}[n], & x_{1}[n]<0\end{array}\right.$ and
$y_{2}[n]=S x_{2}[n]=\left\{\begin{array}{cc}(n+1) x_{2}[n], & x_{2}[n] \geq 0 \\ -(n+1) x_{2}[n], & x_{2}[n]<0\end{array}\right.$.
Then for $x[n]=a x_{1}[n]+b x_{2}[n]$, we have

$$
\begin{aligned}
y[n] & =\left\{\begin{array}{cc}
(n+1)\left(a x_{1}[n]+b x_{2}[n]\right), & a x_{1}[n]+b x_{2}[n] \geq 0 \\
-(n+1)\left(a x_{1}[n]+b x_{2}[n]\right), & a x_{1}[n]+b x_{2}[n]<0
\end{array}\right. \\
& \neq a y_{1}[n]+b y_{2}[n] \\
& =\left\{\begin{array}{cc}
(n+1) a x_{1}[n], & x_{1}[n] \geq 0 \\
-(n+1) a x_{1}[n], & x_{1}[n]<0
\end{array}+\left\{\begin{array}{cc}
(n+1) b x_{2}[n], & x_{2}[n] \geq 0 \\
-(n+1) b x_{2}[n], & x_{2}[n]<0
\end{array}\right.\right.
\end{aligned}
$$

Method 2: We show that the system is not homogeneous. Consider the input $x_{1}[n]=-1$, then $y_{1}[n]=S x_{1}[n]=(n+1)$. Now for the input $x_{2}[n]=(-1) x_{1}[n]=1$, we have $y_{2}[n]=S x_{2}[n]=(n+1) \neq(-1) y_{1}[n]=-(n+1)$.
Method 3: We show that the system is not additive. Consider the inputs $x_{1}[n]=-2$ and $x_{2}[n]=1$, for which $y_{1}[n]=S x_{1}[n]=2(n+1)$ and $y_{2}[n]=S x_{2}[n]=(n+1)$. For the input $x[n]:=x_{1}[n]+x_{2}[n]=-1$ we have $y[n]=(n+1) \neq y_{1}[n]+y_{2}[n]=3(n+1)$.
(c) It is unstable: for a given bound $|x[n]|<B$, the output can not be bounded for n large. For example, $x_{1}[n]=1$ is a bounded input leading to the unbounded output $y_{1}[n]=S x_{1}[n]=(n+1)$.

Problem 2 (30 marks)

(a) [20 marks] Compute the output $y(t)$ of the continuous-time LTI system S_{0} with impulse response $h(t)$ for an input signal $x(t)$ as depicted below.

Answer:
SOLUTION 1: Let's time-reverse and shift the impulse response. This way the integral will always be evaluated over $-2 \leq \tau \leq 2$ The intervals of interest are:
$t<-2$: overlap with the left part of $h(\tau)$, so

$$
\begin{aligned}
y(t) & =\int_{-2}^{2} h(t-\tau) d \tau=\int_{-2}^{2} e^{t-\tau} d \tau=e^{t} \int_{-2}^{2} e^{-\tau} d \tau=-e^{t}\left[e^{-\tau}\right]_{-2}^{2} \\
& =\left[e^{2}-e^{-2}\right] e^{t}
\end{aligned}
$$

$t>2$: overlap with the right part of $h(\tau)$, so

$$
\begin{aligned}
y(t) & =\int_{-2}^{2} h(t-\tau) d \tau=\int_{-2}^{2} e^{-\frac{t-\tau}{2}} d \tau=e^{-\frac{t}{2}} \int_{-2}^{2} e^{\frac{\tau}{2}} d \tau=2 e^{-\frac{t}{2}}\left[e^{\frac{\tau}{2}}\right]_{-2}^{2} \\
& =2\left[e^{1}-e^{-1}\right] e^{-\frac{t}{2}}
\end{aligned}
$$

$-2<t<2$: overlap with both parts of $h(\tau)$.

$$
\begin{aligned}
y(t) & =\int_{-2}^{2} h(t-\tau) d \tau=\int_{-2}^{t} e^{-\frac{t-\tau}{2}} d \tau+\int_{t}^{2} e^{t-\tau} d \tau=e^{-\frac{t}{2}} \int_{-2}^{t} e^{\frac{\tau}{2}} d \tau+e^{t} \int_{t}^{2} e^{-\tau} d \tau \\
& =2 e^{-\frac{t}{2}}\left[e^{\frac{\tau}{2}}\right]_{-2}^{t}-e^{t}\left[e^{-\tau}\right]_{t}^{2} \\
& =2\left[e^{\frac{t}{2}}-e^{-1}\right] e^{-\frac{t}{2}}-e^{t}\left[e^{-2}-e^{-t}\right] \\
& =3-2 e^{-1} e^{-\frac{t}{2}}-e^{-2} e^{t}
\end{aligned}
$$

Finally, piecing all three intervals together, we get:
$y(t)=\left\{\begin{array}{cc}{\left[e^{2}-e^{-2}\right] e^{t}} & t<-2 \\ 3-2 e^{-1} e^{-\frac{t}{2}}-e^{-2} e^{t} & -2 \leq t<2 \\ 2\left[e^{1}-e^{-1}\right] e^{-\frac{t}{2}} & t \geq 2\end{array}\right.$
SOLUTION 2: Let's break down the impulse response into two parts and use linear superposition.
$h(t)=h_{1}(t)+h_{2}(t), h_{1}(t)=e^{-\frac{t}{2}} u(t), h_{2}(t)=e^{t} u(-t)$.
Response of $h_{1}(t)$: the intervals are
$t<-2$: no overlap with $x(\tau)$, so $y_{1}(t)=0$.
$-2<t<2$: overlap with $x(\tau)$ for $-2 \leq \tau \leq t$.

$$
\begin{aligned}
y_{1}(t) & =\int_{-2}^{t} h_{1}(t-\tau) d \tau=\int_{-2}^{t} e^{-\frac{t-\tau}{2}} d \tau=e^{-\frac{t}{2}} \int_{-2}^{t} e^{\frac{\tau}{2}} d \tau \\
& =2 e^{-\frac{t}{2}}\left[e^{\frac{\tau}{2}}\right]_{-2}^{t}=2\left[e^{\frac{t}{2}}-e^{-1}\right] e^{-\frac{t}{2}} \\
& =2-2 e^{-1} e^{-\frac{t}{2}}
\end{aligned}
$$

$t>2$: overlap with $x(\tau)$, so

$$
\begin{aligned}
y_{1}(t) & =\int_{-2}^{2} h_{1}(t-\tau) d \tau=\int_{-2}^{2} e^{-\frac{t-\tau}{2}} d \tau=e^{-\frac{t}{2}} \int_{-2}^{2} e^{\frac{\tau}{2}} d \tau=2 e^{-\frac{t}{2}}\left[e^{\frac{\tau}{2}}\right]_{-2}^{2} \\
& =2\left[e^{1}-e^{-1}\right] e^{-\frac{t}{2}}
\end{aligned}
$$

Response of $h_{2}(t)$: the intervals are
$t<-2$: overlap with $x(\tau)$.

$$
\begin{aligned}
y_{2}(t) & =\int_{-2}^{2} h_{2}(t-\tau) d \tau=\int_{-2}^{2} e^{t-\tau} d \tau=e^{t} \int_{-2}^{2} e^{-\tau} d \tau=-e^{t}\left[e^{-\tau}\right]_{-2}^{2} \\
& =\left[e^{2}-e^{-2}\right] e^{t}
\end{aligned}
$$

$-2<t<2$: overlap with $x(\tau)$ for $t \leq \tau \leq 2$.

$$
\begin{aligned}
y_{2}(t) & =\int_{-2}^{2} h_{2}(t-\tau) d \tau=\int_{t}^{2} e^{t-\tau} d \tau=e^{t} \int_{t}^{2} e^{-\tau} d \tau=-e^{t}\left[e^{-\tau}\right]_{t}^{2} \\
& =-e^{t}\left[e^{-2}-e^{-t}\right]=1-e^{-2} e^{t}
\end{aligned}
$$

$t>2$: no overlap with $x(\tau)$, so $y_{2}(t)=0$.
Finally,
$y(t)=y_{1}(t)+y_{2}(t)=\left\{\begin{array}{cc}{\left[e^{2}-e^{-2}\right] e^{t}} & t<-2 \\ 3-2 e^{-1} e^{-\frac{t}{2}}-e^{-2} e^{t} & -2 \leq t<2 \\ 2\left[e^{1}-e^{-1}\right] e^{-\frac{t}{2}} & t \geq 2\end{array}\right.$
(b) [10 marks] Is the system S_{0} in (a) stable? Is it causal? Justify your answers.

Yes it is BIBO stable, because the impulse response is absolutely integrable, as shown below.

$$
\begin{aligned}
\int_{-\infty}^{+\infty}|h(t)| d t & =\int_{-\infty}^{+\infty}\left|e^{-\frac{t}{2}} u(t)+e^{t} u(-t)\right| d t \leq \int_{-\infty}^{0} e^{t} d t+\int_{0}^{+\infty} e^{-\frac{t}{2}} d t \\
& =\left[e^{t}\right]_{-\infty}^{0}-2\left[e^{-\frac{t}{2}}\right]_{0}^{+\infty}=1+2=3<+\infty
\end{aligned}
$$

The system is noncausal because $h(t) \neq 0, t<0$.

Problem 3 (15 marks)

Consider the following first-order, causal LTI differential system S initially at rest:

$$
S: \quad 2 \frac{d y(t)}{d t}+3 y(t)=5 \frac{d}{d t} x(t)-x(t)
$$

Compute and sketch the impulse response $h(t)$ of the system S.
Answer:

SOLUTION 1:

Step 1: Set up the problem to calculate the impulse response

$$
2 \frac{d h_{a}(t)}{d t}+3 h_{a}(t)=\delta(t)
$$

Step 2: Find the initial condition of the corresponding homogeneous equation at $t=0^{+}$by integrating the above differential equation from $t=0^{-}$to $t=0^{+}$. Note that the impulse will be in the term $\frac{d h_{a}(t)}{d t}$, so $h_{a}(t)$ will have a finite jump at most. Thus we have

$$
\int_{0^{-}}^{0^{+}} \frac{d h_{a}(\tau)}{d \tau} d \tau=h_{a}\left(0^{+}\right)=0.5
$$

hence $h_{a}\left(0^{+}\right)=0.5$ is our initial condition for the homogeneous equation for $t>0$

$$
2 \frac{d h_{a}(t)}{d t}+3 h_{a}(t)=0 .
$$

Step 3: The characteristic polynomial is $p(s)=2 s+3$ and it has one zero at $s=-\frac{3}{2}$, which means that the homogeneous response has the form $h_{a}(t)=A e^{-\frac{3}{2} t}$ for $t>0$. The initial condition allows us to determine the constant A :
so that

$$
\begin{aligned}
& h_{a}\left(0^{+}\right)=A=0.5, \\
& h_{a}(t)=0.5 e^{-\frac{3}{2} t} .
\end{aligned}
$$

Step 4:

$$
\begin{aligned}
h(t) & =5 \frac{d h_{a}(t)}{d t}-h_{a}(t) \\
& =5 \frac{d}{d t}\left(0.5 e^{-\frac{3}{2} t} u(t)\right)-0.5 e^{-\frac{3}{2} t} u(t) \\
& =-\frac{17}{4} e^{-\frac{3}{2} t} u(t)+2.5 \delta(t)
\end{aligned}
$$

SOLUTION 2: (step response approach)
Step 1: Set up the problem to calculate the step response of the left-hand side

$$
2 \frac{d s_{a}(t)}{d t}+3 s_{a}(t)=u(t)
$$

Step 2: Compute the step response as the sum of a forced response and a homogeneous response.
The characteristic polynomial of this system is

$$
p(s)=2 s+3=2(s+1.5)
$$

Hence, the homogeneous solution has the form

$$
y_{h}(t)=A e^{-1.5 t}
$$

We look for a particular solution of the form $y_{p}(t)=K$ for $t>0$ when $x(t)=1$. We find

$$
y_{p}(t)=\frac{1}{3}
$$

Adding the homogeneous and particular solutions, we obtain the overall step response for $t>0$:

$$
s_{a}(t)=A e^{-1.5 t}+\frac{1}{3}
$$

The initial conditions at $t=0^{-}$is $s_{a}\left(0^{-}\right)=0$. Thus,

$$
\begin{aligned}
& s_{a}(0)=0=A+\frac{1}{3} \\
& \Rightarrow \quad A=-\frac{1}{3}
\end{aligned}
$$

Which means that the intermediate step response of the system is:

$$
s_{a}(t)=\left(-\frac{1}{3} e^{-1.5 t}+\frac{1}{3}\right) u(t)
$$

Step 3: Differentiating, we obtain the intermediate impulse response:

$$
h_{a}(t)=\frac{d}{d t} s_{a}(t)=\left(\frac{1}{2} e^{-1.5 t}\right) u(t)
$$

Step 4: Use the right-hand side of the differential equation

$$
\begin{aligned}
h(t) & =5 \frac{d h_{a}(t)}{d t}-h_{a}(t) \\
& =5 \frac{d}{d t}\left(0.5 e^{-\frac{3}{2} t} u(t)\right)-0.5 e^{-\frac{3}{2} t} u(t) \\
& =-\frac{17}{4} e^{-\frac{3}{2} t} u(t)+2.5 \delta(t)
\end{aligned}
$$

Problem 4 (10 marks)

Compute the response of the following homogeneous causal second-order difference equation to the initial conditions $y[-1]=1, y[-2]=2$:

$$
2 y[n]-3 y[n-1]-2 y[n-2]=0
$$

Answer:
characteristic polynomial and zeros:
$p(z)=2 z^{2}-3 z-2=2(z+0.5)(z-2)$
The zeros are $z_{1}=-0.5, z_{2}=2$.
The homogeneous response is given by

$$
y[n]=A(-0.5)^{n}+B(2)^{n}, n \geq 0 .
$$

Use initial conditions to compute the coefficients A and B :

$$
\begin{aligned}
& y[-1]=1=A(-0.5)^{-1}+B(2)^{-1} \\
& y[-2]=2=A(-0.5)^{-2}+B(2)^{-2}
\end{aligned}
$$

Hence

$$
A=\frac{3}{10}, \quad B=\frac{16}{5},
$$

and the homogeneous response is

$$
y[n]=\left[\frac{3}{10}(-0.5)^{n}+\frac{16}{5}(2)^{n}\right] u[n] .
$$

