Sample Midterm Test 1 (mt1s00) Covering Chapters 1-3 of *Fundamentals of Signals & Systems*

Problem 1 (15 marks)

Determine if the discrete-time system described by $y[n] = \begin{cases} (n+1)x[n], & x[n] \ge 0\\ -(n+1)x[n], & x[n] < 0 \end{cases}$ is

- (a) [5 marks] Time-invariant
- (b) [5 marks] Linear
- (c) [5 marks] Stable

Justify your answers. *Answers:*

(a) It is not time-invariant. Let
$$y_1[n] = Sx[n-N] = \begin{cases} (n+1)x[n-N], & x[n-N] \ge 0\\ -(n+1)x[n-N], & x[n-N] < 0 \end{cases}$$
. It is
easy to see that $y_1[n] \neq y[n-N] = \begin{cases} (n-N+1)x[n-N], & x[n-N] \ge 0\\ -(n-N+1)x[n-N], & x[n-N] < 0 \end{cases}$.

(b) It is nonlinear.

Method 1: Principle of Superposition, let $y_1[n] = Sx_1[n] = \begin{cases} (n+1)x_1[n], & x_1[n] \ge 0\\ -(n+1)x_1[n], & x_1[n] < 0 \end{cases}$ and

$$y_{2}[n] = Sx_{2}[n] = \begin{cases} (n+1)x_{2}[n], & x_{2}[n] \ge 0\\ -(n+1)x_{2}[n], & x_{2}[n] < 0 \end{cases}$$

Then for $x[n] = ax_{1}[n] + bx_{2}[n]$, we have
$$y[n] = \begin{cases} (n+1)(ax_{1}[n] + bx_{2}[n]), & ax_{1}[n] + bx_{2}[n] \ge 0\\ -(n+1)(ax_{1}[n] + bx_{2}[n]), & ax_{1}[n] + bx_{2}[n] < 0 \end{cases}$$
$$\neq ay_{1}[n] + by_{2}[n]$$
$$= \begin{cases} (n+1)ax_{1}[n], & x_{1}[n] \ge 0\\ -(n+1)ax_{1}[n], & x_{1}[n] < 0 \end{cases} + \begin{cases} (n+1)bx_{2}[n], & x_{2}[n] \ge 0\\ -(n+1)bx_{2}[n], & x_{2}[n] < 0 \end{cases}$$

Method 2: We show that the system is not homogeneous. Consider the input $x_1[n] = -1$, then $y_1[n] = Sx_1[n] = (n+1)$. Now for the input $x_2[n] = (-1)x_1[n] = 1$, we have $y_2[n] = Sx_2[n] = (n+1) \neq (-1)y_1[n] = -(n+1)$.

Method 3: We show that the system is not additive. Consider the inputs $x_1[n] = -2$ and $x_2[n] = 1$, for which $y_1[n] = Sx_1[n] = 2(n+1)$ and $y_2[n] = Sx_2[n] = (n+1)$. For the input $x[n] := x_1[n] + x_2[n] = -1$ we have $y[n] = (n+1) \neq y_1[n] + y_2[n] = 3(n+1)$.

(c) It is <u>unstable</u>: for a given bound |x[n]| < B, the output can not be bounded for n large. For example, $x_1[n] = 1$ is a bounded input leading to the unbounded output $y_1[n] = Sx_1[n] = (n+1)$.

Problem 2 (30 marks)

(a) [20 marks] Compute the output y(t) of the continuous-time LTI system S_0 with impulse response h(t) for an input signal x(t) as depicted below.

Answer:

SOLUTION 1: Let's time-reverse and shift the impulse response. This way the integral will always be evaluated over $-2 \le \tau \le 2$ The intervals of interest are:

$$t < -2: \text{ overlap with the left part of } h(\tau), \text{ so}$$

$$y(t) = \int_{-2}^{2} h(t-\tau) d\tau = \int_{-2}^{2} e^{t-\tau} d\tau = e^{t} \int_{-2}^{2} e^{-\tau} d\tau = -e^{t} \left[e^{-\tau} \right]_{-2}^{2}$$
$$= \left[e^{2} - e^{-2} \right] e^{t}$$

t > 2: overlap with the right part of $h(\tau)$, so

$$y(t) = \int_{-2}^{2} h(t-\tau) d\tau = \int_{-2}^{2} e^{-\frac{t-\tau}{2}} d\tau = e^{-\frac{t}{2}} \int_{-2}^{2} e^{\frac{\tau}{2}} d\tau = 2e^{-\frac{t}{2}} \left[e^{\frac{\tau}{2}} \right]_{-2}^{2}.$$
$$= 2 \left[e^{1} - e^{-1} \right] e^{-\frac{t}{2}}$$

-2 < t < 2: overlap with both parts of $h(\tau)$.

$$y(t) = \int_{-2}^{2} h(t-\tau)d\tau = \int_{-2}^{t} e^{-\frac{t-\tau}{2}} d\tau + \int_{t}^{2} e^{t-\tau} d\tau = e^{-\frac{t}{2}} \int_{-2}^{t} e^{\frac{\tau}{2}} d\tau + e^{t} \int_{t}^{2} e^{-\tau} d\tau$$
$$= 2e^{-\frac{t}{2}} \left[e^{\frac{\tau}{2}} \right]_{-2}^{t} - e^{t} \left[e^{-\tau} \right]_{t}^{2}$$
$$= 2 \left[e^{\frac{t}{2}} - e^{-1} \right] e^{-\frac{t}{2}} - e^{t} \left[e^{-2} - e^{-t} \right]$$
$$= 3 - 2e^{-1} e^{-\frac{t}{2}} - e^{-2} e^{t}$$

Finally, piecing all three intervals together, we get:

$$y(t) = \begin{cases} \left[e^{2} - e^{-2}\right]e^{t} & t < -2\\ 3 - 2e^{-1}e^{-\frac{t}{2}} - e^{-2}e^{t} & -2 \le t < 2\\ 2\left[e^{1} - e^{-1}\right]e^{-\frac{t}{2}} & t \ge 2 \end{cases}$$

SOLUTION 2: Let's break down the impulse response into two parts and use linear superposition.

$$h(t) = h_1(t) + h_2(t), \ h_1(t) = e^{\frac{t}{2}}u(t), \ h_2(t) = e^tu(-t).$$

Response of $h_1(t)$: the intervals are

t < -2: no overlap with $x(\tau)$, so $y_1(t) = 0$.

$$-2 < t < 2: \text{ overlap with } x(\tau) \text{ for } -2 \le \tau \le t.$$

$$y_1(t) = \int_{-2}^{t} h_1(t-\tau) d\tau = \int_{-2}^{t} e^{-\frac{t-\tau}{2}} d\tau = e^{-\frac{t}{2}} \int_{-2}^{t} e^{\frac{\tau}{2}} d\tau$$

$$= 2e^{-\frac{t}{2}} \left[e^{\frac{\tau}{2}} \right]_{-2}^{t} = 2 \left[e^{\frac{t}{2}} - e^{-1} \right] e^{-\frac{t}{2}}$$

$$= 2 - 2e^{-1} e^{-\frac{t}{2}}$$

t > 2: overlap with $x(\tau)$, so

$$y_{1}(t) = \int_{-2}^{2} h_{1}(t-\tau) d\tau = \int_{-2}^{2} e^{-\frac{t-\tau}{2}} d\tau = e^{-\frac{t}{2}} \int_{-2}^{2} e^{\frac{\tau}{2}} d\tau = 2e^{-\frac{t}{2}} \left[e^{\frac{\tau}{2}} \right]_{-2}^{2}.$$
$$= 2 \left[e^{1} - e^{-1} \right] e^{-\frac{t}{2}}$$

Response of $h_2(t)$: the intervals are

$$t < -2: \text{ overlap with } x(\tau).$$

$$y_{2}(t) = \int_{-2}^{2} h_{2}(t-\tau) d\tau = \int_{-2}^{2} e^{t-\tau} d\tau = e^{t} \int_{-2}^{2} e^{-\tau} d\tau = -e^{t} \left[e^{-\tau} \right]_{-2}^{2}$$

$$= \left[e^{2} - e^{-2} \right] e^{t}$$

-2 < t < 2: overlap with $x(\tau)$ for $t \le \tau \le 2$.

$$y_{2}(t) = \int_{-2}^{2} h_{2}(t-\tau) d\tau = \int_{t}^{2} e^{t-\tau} d\tau = e^{t} \int_{t}^{2} e^{-\tau} d\tau = -e^{t} \left[e^{-\tau} \right]_{t}^{2}$$
$$= -e^{t} \left[e^{-2} - e^{-t} \right] = 1 - e^{-2} e^{t}$$

t > 2: no overlap with $x(\tau)$, so $y_2(t) = 0$. Finally,

$$y(t) = y_1(t) + y_2(t) = \begin{cases} \left[e^2 - e^{-2}\right]e^t & t < -2\\ 3 - 2e^{-1}e^{-\frac{t}{2}} - e^{-2}e^t & -2 \le t < 2\\ 2\left[e^1 - e^{-1}\right]e^{-\frac{t}{2}} & t \ge 2 \end{cases}$$

(b) [10 marks] Is the system $\,S_0\,$ in (a) stable? Is it causal? Justify your answers.

Yes it is BIBO stable, because the impulse response is absolutely integrable, as shown below.

$$\int_{-\infty}^{+\infty} |h(t)| dt = \int_{-\infty}^{+\infty} \left| e^{-\frac{t}{2}} u(t) + e^{t} u(-t) \right| dt \le \int_{-\infty}^{0} e^{t} dt + \int_{0}^{+\infty} e^{-\frac{t}{2}} dt$$
$$= \left[e^{t} \right]_{-\infty}^{0} - 2 \left[e^{-\frac{t}{2}} \right]_{0}^{+\infty} = 1 + 2 = 3 < +\infty$$

The system is noncausal because $h(t) \neq 0, t < 0$.

Problem 3 (15 marks)

Consider the following first-order, causal LTI differential system S initially at rest:

S:
$$2\frac{dy(t)}{dt} + 3y(t) = 5\frac{d}{dt}x(t) - x(t)$$

Compute and sketch the impulse response h(t) of the system *S*.

Answer:

SOLUTION 1:

Step 1: Set up the problem to calculate the impulse response

$$2\frac{dh_a(t)}{dt} + 3h_a(t) = \delta(t)$$

Step 2: Find the initial condition of the corresponding homogeneous equation at $t = 0^+$ by integrating the above differential equation from $t = 0^-$ to $t = 0^+$. Note that the impulse will be in the term $\frac{dh_a(t)}{dt}$, so $h_a(t)$ will have a finite jump at most. Thus we have

$$\int_{0^{-}}^{0^{+}} \frac{dh_a(\tau)}{d\tau} d\tau = h_a(0^{+}) = 0.5 ,$$

hence $h_a(0^+) = 0.5$ is our initial condition for the homogeneous equation for t > 0

$$2\frac{dh_a(t)}{dt} + 3h_a(t) = 0$$

Step 3: The characteristic polynomial is p(s) = 2s + 3 and it has one zero at $s = -\frac{3}{2}$, which

means that the homogeneous response has the form $h_a(t) = Ae^{-\frac{3}{2}t}$ for t > 0. The initial condition allows us to determine the constant A:

$$h_a(0^+) = A = 0.5$$

 $h_a(t) = 0.5e^{-\frac{3}{2}t}$.

so that

Step 4:

$$h(t) = 5 \frac{dh_a(t)}{dt} - h_a(t)$$

= $5 \frac{d}{dt} \left(0.5 e^{-\frac{3}{2}t} u(t) \right) - 0.5 e^{-\frac{3}{2}t} u(t)$
= $-\frac{17}{4} e^{-\frac{3}{2}t} u(t) + 2.5 \delta(t)$

SOLUTION 2: (step response approach)

Step 1: Set up the problem to calculate the step response of the left-hand side

$$2\frac{ds_a(t)}{dt} + 3s_a(t) = u(t)$$

Step 2: Compute the step response as the sum of a forced response and a homogeneous response.

The characteristic polynomial of this system is

$$p(s) = 2s + 3 = 2(s + 1.5)$$
,

Hence, the homogeneous solution has the form

$$y_h(t) = A e^{-1.5t} \, .$$

We look for a particular solution of the form $y_p(t) = K$ for t > 0 when x(t) = 1. We find

$$y_p(t) = \frac{1}{3}.$$

Adding the homogeneous and particular solutions, we obtain the overall step response for t > 0:

$$s_a(t) = Ae^{-1.5t} + \frac{1}{3}.$$

The initial conditions at $t = 0^-$ is $s_a(0^-) = 0$. Thus,

$$s_a(0) = 0 = A + \frac{1}{3}$$
$$\Rightarrow A = -\frac{1}{3}$$

Which means that the intermediate step response of the system is:

$$s_a(t) = \left(-\frac{1}{3}e^{-1.5t} + \frac{1}{3}\right)u(t).$$

Step 3: Differentiating, we obtain the intermediate impulse response:

$$h_a(t) = \frac{d}{dt} s_a(t) = \left(\frac{1}{2}e^{-1.5t}\right) u(t)$$

Step 4: Use the right-hand side of the differential equation

$$h(t) = 5 \frac{dh_a(t)}{dt} - h_a(t)$$

= $5 \frac{d}{dt} \left(0.5e^{-\frac{3}{2}t} u(t) \right) - 0.5e^{-\frac{3}{2}t} u(t)$
= $-\frac{17}{4}e^{-\frac{3}{2}t} u(t) + 2.5\delta(t)$

Problem 4 (10 marks)

Compute the response of the following homogeneous causal second-order difference equation to the initial conditions y[-1] = 1, y[-2] = 2:

$$2y[n] - 3y[n-1] - 2y[n-2] = 0$$

Answer:

characteristic polynomial and zeros:

$$p(z) = 2z^2 - 3z - 2 = 2(z + 0.5)(z - 2)$$

The zeros are $z_1 = -0.5, z_2 = 2$.

The homogeneous response is given by

$$y[n] = A(-0.5)^n + B(2)^n, n \ge 0.$$

Use initial conditions to compute the coefficients A and B:

$$y[-1] = 1 = A(-0.5)^{-1} + B(2)^{-1}$$

 $y[-2] = 2 = A(-0.5)^{-2} + B(2)^{-2}$

Hence

$$A = \frac{3}{10}, \quad B = \frac{16}{5},$$

and the homogeneous response is

$$y[n] = \left[\frac{3}{10}(-0.5)^n + \frac{16}{5}(2)^n\right]u[n].$$