Sample Final Exam (finals03)
 Covering Chapters 1-9 of Fundamentals of Signals \& Systems

Problem 1 (20 marks)

Consider the causal op-amp circuit initially at rest depicted below. Its LTI circuit model with a voltagecontrolled source is also given below.
(a) [8 marks] Transform the circuit using the Laplace transform, and find the transfer function $H_{A}(s)=V_{\text {out }}(s) / V_{\text {in }}(s)$. Then, let the op-amp gain $A \rightarrow+\infty$ to obtain the ideal transfer function $H(s)=\lim _{A \rightarrow+\infty} H_{A}(s)$.

Answer:
The transformed circuit:

There are two supernodes for which the nodal voltages are given by the source voltages. The remaining nodal equation is

$$
\frac{V_{i n}(s)-V_{x}(s)}{R_{2}}+\frac{-A V_{x}(s)-V_{x}(s)}{R_{1}\left\|\frac{1}{C s}\right\| L_{1} s}=0
$$

where $R_{1}\left\|\frac{1}{C s}\right\| L_{1} s=\frac{1}{C s+\frac{1}{R_{1}}+\frac{1}{L_{1} s}}=\frac{R_{1} L_{1} s}{R_{1} L_{1} C s^{2}+L_{1} s+R_{1}}$. Simplifying the above equation, we get:

$$
\frac{1}{R_{2}} V_{i n}(s)-\left[\frac{(A+1)\left(R_{1} L_{1} C s^{2}+L_{1} s+R_{1}\right)}{R_{1} L_{1} s}+\frac{1}{R_{2}}\right] V_{x}(s)=0
$$

Thus, the transfer function between the input voltage and the node voltage is given by

$$
\begin{aligned}
\frac{V_{x}(s)}{V_{i n}(s)} & =\frac{\frac{1}{R_{2}}}{\frac{(A+1)\left(R_{1} L_{1} C s^{2}+L_{1} s+R_{1}\right)}{R_{1} L_{1} s}+\frac{1}{R_{2}}} . \\
& =\frac{R_{1} L_{1} s}{R_{2}(A+1)\left(R_{1} L_{1} C s^{2}+L_{1} s+R_{1}\right)+R_{1} L_{1} s}
\end{aligned}
$$

The transfer function between the input voltage and the output voltage is

$$
H_{A}(s)=\frac{V_{\text {out }}(s)}{V_{\text {in }}(s)}=\frac{-A V_{x}(s)}{V_{\text {in }}(s)}=\frac{-A R_{1} L_{1} s}{R_{2}(A+1)\left(R_{1} L_{1} C s^{2}+L_{1} s+R_{1}\right)+R_{1} L_{1} s}
$$

The ideal transfer function is the limit as the op-amp gain tends to infinity:

$$
H(s)=\lim _{A \rightarrow \infty} H_{A}(s)=-\frac{R_{1} L_{1} s}{R_{2} R_{1} L_{1} C s^{2}+R_{2} L_{1} s+R_{2} R_{1}}=-\frac{L_{1} / R_{2} s}{\left(L_{1} C s^{2}+\frac{L_{1}}{R_{1}} s+1\right)}
$$

(b) [5 marks] Assume that the transfer function $H_{1}(s)=\frac{H(s)}{s}$ has a DC gain of -50 , and that $H(s)$ has one zero at 0 and two complex conjugate poles with $\omega_{n}=10 \mathrm{rd} / \mathrm{s}, \zeta=0.5$. Let $L_{1}=10 \mathrm{H}$. Find the values of the remaining circuit components R_{1}, R_{2}, C.
Answer:
DC gain of $H_{1}(s)=\frac{H(s)}{s}=-\frac{L_{1} / R_{2}}{\left(L_{1} C s^{2}+\frac{L_{1}}{R_{1}} s+1\right)}$ is given by $-L_{1} / R_{2}=-50$.
Component values are obtained by setting

$$
H(s)=-50 \frac{s}{0.01 s^{2}+0.1 s+1}=-\frac{\frac{L_{1}}{R_{2}} s}{\left(L_{1} C s^{2}+\frac{L_{1}}{R_{1}} s+1\right)}
$$

which yields $\Leftrightarrow R_{1}=100 \Omega, R_{2}=0.2 \Omega, C=0.001 F$
(c) [7 marks] Give the frequency response of $H(s)$ and sketch its Bode plot.

Answer: Frequency response is $H(j \omega)=-50 \frac{j \omega}{0.01(j \omega)^{2}+0.1(j \omega)+1}$. Bode plot:

Problem 2 (20 marks)

Consider the causal differential system described by its direct form realization shown below,

and with initial conditions $\frac{d y\left(0^{-}\right)}{d t}=-1, \quad y\left(0^{-}\right)=2$. Suppose that this system is subjected to the unit step input signal $x(t)=u(t)$.
(a) [8 marks] Write the differential equation of the system. Find the system's damping ratio ζ and undamped natural frequency ω_{n}. Give the transfer function of the system and specify its ROC. Sketch its pole-zero plot. Is the system stable? Justify.
Answer:
Differential equation: $\frac{d^{2} y(t)}{d t^{2}}+2 \sqrt{2} \frac{d y(t)}{d t}+4 y(t)=3 x(t)$
Let's take the unilateral Laplace transform on both sides of the differential equation.

$$
\left[s^{2} \boldsymbol{y}(s)-s y\left(0^{-}\right)-\frac{d y\left(0^{-}\right)}{d t}\right]+2 \sqrt{2}\left[s \boldsymbol{y}(s)-y\left(0^{-}\right)\right]+4 \boldsymbol{Y}(s)=3 \boldsymbol{X}(s)
$$

Collecting the terms containing $\mathcal{Y}(s)$ on the left-hand side and putting everything else on the righthand side, we can solve for $\mathscr{Y}(s)$.

$$
\begin{aligned}
& \left(s^{2}+2 \sqrt{2} s+4\right) \mathcal{Y}(s)=3 \mathcal{X}(s)+s y\left(0^{-}\right)+2 \sqrt{2} y\left(0^{-}\right)+\frac{d y\left(0^{-}\right)}{d t} \\
& \mathcal{Y}(s)=\underbrace{\frac{3 X(s)}{s^{2}+2 \sqrt{2} s+4}}_{\text {zero-state resp. }}+\underbrace{\frac{(s+2 \sqrt{2}) y\left(0^{-}\right)+\frac{d y\left(0^{-}\right)}{d t}}{s^{2}+2 \sqrt{2} s+4}}_{\text {zero-input resp. }}
\end{aligned}
$$

The transfer function is $\mathscr{H}(s)=\frac{3}{s^{2}+2 \sqrt{2} s+4}$,
and since the system is causal, the ROC is an open RHP to the right of the rightmost pole.
The undamped natural frequency is $\omega_{n}=2$ and the damping ratio is $\zeta=\frac{1}{\sqrt{2}}$. The poles are $p_{1,2}=-\zeta \omega_{n} \pm j \omega_{n} \sqrt{1-\zeta^{2}}=-\sqrt{2} \pm j 2 \sqrt{1-\frac{1}{2}}=-\sqrt{2} \pm j \sqrt{2}$.

Therefore the ROC is $\operatorname{Re}\{s\}>-\sqrt{2}$. System is stable as jw-axis is contained in ROC. Pole-zero plot:

(b) [8 marks] Compute the step response of the system (including the effect of initial conditions), its steady-state response $y_{s s}(t)$ and its transient response $y_{t r}(t)$ for $t \geq 0$. Identify the zero-state response and the zero-input response in the Laplace domain.
Answer:
The unilateral LT of the input is given by

$$
X(s)=\frac{1}{s}, \quad \operatorname{Re}\{s\}>0,
$$

thus, $\quad \boldsymbol{\mathcal { H }}(s)=\underbrace{\frac{3}{\left(s^{2}+2 \sqrt{2} s+4\right) s}}_{\begin{array}{c}\text { Re }\{s\}>0 \\ \text { zero-state resp. }\end{array}}+\underbrace{\frac{2(s+2 \sqrt{2})-1}{s^{2}+2 \sqrt{2} s+4}}_{\begin{array}{c}\text { Re }\{s,>-1 \\ \text { zero-input resp. }\end{array}}=\frac{2 s^{2}+(4 \sqrt{2}-1) s+3}{\left(s^{2}+2 \sqrt{2} s+4\right) s}$
Let's compute the overall response:

$$
\begin{aligned}
\boldsymbol{y}(s) & =\frac{2 s^{2}+(4 \sqrt{2}-1) s+3}{\left(s^{2}+2 \sqrt{2} s+4\right) s}, \quad \operatorname{Re}\{s\}>0 \\
& =\underbrace{\frac{A \sqrt{2}+B(s+\sqrt{2})}{(s+\sqrt{2})^{2}+2}}_{\operatorname{Re}\{s\}\rangle-\sqrt{2}}+\underbrace{\frac{C}{s}}_{\operatorname{Re}\{s\}\rangle>0} \\
& =\underbrace{\frac{A \sqrt{2}+B(s+\sqrt{2})}{(s+\sqrt{2})^{2}+2}}_{\operatorname{Re}\{s\}\rangle>-\sqrt{2}}+\underbrace{\frac{0.75}{s}}_{\operatorname{Re}\{s\}>0}
\end{aligned}
$$

Let $s=-\sqrt{2}$ to compute

$$
\begin{aligned}
& \frac{2(2)+(4 \sqrt{2}-1)(-\sqrt{2})+3}{2(-\sqrt{2})}=\frac{1}{\sqrt{2}} A+\frac{0.75}{-\sqrt{2}} \\
& \frac{-1+\sqrt{2}}{-2 \sqrt{2}}=\frac{1}{\sqrt{2}} A+\frac{0.75}{-\sqrt{2}} \\
& \Rightarrow A=\frac{1-\sqrt{2}}{2}+0.75=0.5429
\end{aligned}
$$

then multiply both sides by s and let $s \rightarrow \infty$ to get $2=B+0.75 \Rightarrow B=1.25$:

$$
\boldsymbol{y}(s)=\underbrace{\frac{0.5429 \sqrt{2}}{(s+\sqrt{2})^{2}+2}}_{\operatorname{Re}\{s\}>-\sqrt{2}}+\underbrace{\frac{1.25(s+\sqrt{2})}{(s+\sqrt{2})^{2}+2}}_{\operatorname{Re}\{s\}\rangle>-\sqrt{2}}+\underbrace{\frac{0.75}{s}}_{\operatorname{Re}\{s\}>0}
$$

Notice that the second term $\frac{1}{S}$ is the steady-state response, and thus $y_{s s}(t)=0.75 u(t)$.
Taking the inverse Laplace transform using the table yields

$$
y(t)=0.5429 e^{-\sqrt{2} t} \sin (\sqrt{2} t) u(t)+1.25 e^{-\sqrt{2} t} \cos (\sqrt{2} t) u(t)+0.75 u(t) .
$$

Thus, the transient response is

$$
y_{t r}(t)=0.5429 e^{-\sqrt{2} t} \sin (\sqrt{2} t) u(t)+1.25 e^{-\sqrt{2} t} \cos (\sqrt{2} t) u(t) .
$$

(c) [4 marks] Compute the percentage of the first overshoot in the step response of the system assumed this time to be initially at rest.
Answer:
Transfer function is $\mathscr{H}(s)=\frac{3}{s^{2}+2 \sqrt{2} s+4}, \operatorname{Re}\{s\}>\sqrt{2}$ with damping ratio $\zeta=\frac{1}{\sqrt{2}}$:
$O S=100 e^{-\frac{\zeta \pi}{\sqrt{1-\varsigma^{2}}}} \%=100 e^{-\frac{0.707 \pi}{0.707}} \%=100 e^{-\pi} \%=4.3 \%$

Problem 3 (20 marks)

The following nonlinear circuit is an ideal full-wave rectifier.

The voltages are $v_{i n}(t)=e^{\alpha t}\left[u(t)-u\left(t-T_{1}\right)\right] * \sum_{k=-\infty}^{+\infty}\left[\delta\left(t-2 k T_{1}\right)-\delta\left(t-(2 k-1) T_{1}\right)\right]$ where $\alpha \in \mathbb{R}, \alpha>0$, and $v(t)=\left|v_{i n}(t)\right|$.
(a) [5 marks] Find the fundamental period T of the input voltage. Sketch the input and output voltages $v_{i n}(t), v(t)$ for $\alpha=1 / T_{1}$.
Answer:
We have $T=2 T_{1}$

(b) [8 marks] Compute the Fourier series coefficients a_{k} of the input voltage $v_{i n}(t)$ for any positive values of α and T_{1}. Write $v_{i n}(t)$ as a Fourier series.

Answer:
DC component :

$$
\begin{aligned}
a_{0} & =\frac{1}{2 T_{1}} \int_{-T_{1}}^{T_{1}} x(t) d t=\frac{1}{2 T_{1}} \int_{0}^{T_{1}} e^{\alpha t} d t-\frac{1}{2 T_{1}} \int_{-T_{1}}^{0} e^{\alpha\left(t+T_{1}\right)} d t \\
& =\frac{1}{2 T_{1}} \int_{0}^{T_{1}} e^{\alpha t} d t-\frac{1}{2 T_{1}} \int_{0}^{T_{1}} e^{\alpha \tau} d \tau=0
\end{aligned}
$$

for $k \neq 0$:

$$
\begin{aligned}
a_{k} & =\frac{1}{2 T_{1}} \int_{-T_{1}}^{T_{1}} x(t) e^{-j k \frac{2 \pi}{2 T_{1}} t} d t \\
& =\frac{1}{2 T_{1}} \int_{0}^{T_{1}} e^{\alpha t} e^{-j k \frac{\pi}{T_{1}} t} d t-\frac{1}{2 T_{1}} \int_{-T_{1}}^{0} e^{\alpha\left(t+T_{1}\right)} e^{-j k \frac{\pi}{T_{1} t}} d t \\
& =\frac{1}{2 T_{1}} \int_{0}^{T_{1}} e^{\left(\alpha-j k \frac{\pi}{T_{1}}\right) t} d t-\frac{1}{2 T_{1}} e^{\alpha T_{1}} \int_{-T_{1}}^{0} e^{\left(\alpha-j k \frac{\pi}{T_{1}}\right) t} d t \\
& =\frac{1}{2 T_{1}\left(\alpha-j k \frac{\pi}{T_{1}}\right)}\left(e^{\alpha T_{1}} e^{-j k \pi}-1\right)-\frac{e^{\alpha T_{1}}}{2 T_{1}\left(\alpha-j k \frac{\pi}{T_{1}}\right)}\left(1-e^{-\alpha T_{1}} e^{j k \pi}\right) \\
& =\frac{1}{2 T_{1}\left(\alpha-j k \frac{\pi}{T_{1}}\right)}\left(e^{\alpha T_{1}} e^{-j k \pi}-1\right)-\frac{e^{\alpha T_{1}}}{2 T_{1}\left(\alpha-j k \frac{\pi}{T_{1}}\right)}\left(1-e^{-\alpha T_{1}} e^{j k \pi}\right) \\
& =\frac{e^{\alpha T_{1}}\left((-1)^{k}-1\right)+(-1)^{k}-1}{2 T_{1} \alpha-j 2 k \pi} \\
& =\frac{\left(e^{\alpha T_{1}}+1\right)\left((-1)^{k}-1\right)}{2 T_{1} \alpha-j 2 k \pi}
\end{aligned}
$$

Fourier series:

$$
v_{i n}(t)=\sum_{k=-\infty}^{+\infty} \frac{\left(e^{\alpha T_{1}}+1\right)\left((-1)^{k}-1\right)}{2 T_{1} \alpha-j 2 k \pi} e^{j k \frac{\pi}{T_{1}} t}
$$

(c) [5 marks] Compute the Fourier series coefficients b_{k} of $v(t)$ again for any positive values of α and T_{1}.
Answer: Here the fundamental period is $T=T_{1}$.
DC component:

$$
\begin{aligned}
b_{0} & =\frac{1}{T_{1}} \int_{0}^{T_{1}} x(t) d t=\frac{1}{T_{1}} \int_{0}^{T_{1}} e^{\alpha t} d t \\
& =\frac{1}{\alpha T_{1}}\left[e^{\alpha t}\right]_{0}^{T_{1}}=\frac{1}{\alpha T_{1}}\left[e^{\alpha T_{1}}-1\right]
\end{aligned}
$$

for $k \neq 0$:

$$
\begin{aligned}
b_{k} & =\frac{1}{T_{1}} \int_{0}^{T_{1}} x(t) e^{-j k \frac{2 \pi}{T_{1}} t} d t=\frac{1}{T_{1}} \int_{0}^{T_{1}} e^{\left(\alpha-j k \frac{2 \pi}{T_{1}} t\right.} d t \\
& =\frac{1}{T_{1}\left(\alpha-j k \frac{2 \pi}{T_{1}}\right)}\left(e^{\alpha T_{1}}-1\right)=\frac{e^{\alpha T_{1}}-1}{\alpha T_{1}-j 2 k \pi}
\end{aligned}
$$

(d) [2 marks] Compute the Fourier series coefficients of the output voltage signal $v(t)$ for the case $\alpha \rightarrow 0$ with T_{1} held constant. What time-domain signal $v(t)$ do you obtain in this case?
Answer:
When $\alpha \rightarrow 0$ we get a constant signal for $v(t)$.

$$
\begin{aligned}
& \lim _{\alpha \rightarrow 0} b_{0}=\lim _{\alpha \rightarrow 0} \frac{1}{\alpha T_{1}}\left[e^{\alpha T_{1}}-1\right]=1 \\
& \lim _{\alpha \rightarrow 0} b_{k}=\lim _{\alpha \rightarrow 0} \frac{e^{\alpha T_{1}}-1}{\alpha T_{1}-j 2 k \pi}=\frac{1-1}{-j 2 k \pi}=0
\end{aligned}
$$

Problem 4 (15 marks)

System identification
Suppose we know that the input of a differential LTI system is

$$
x(t)=t e^{-2 t} u(t)
$$

and we measured the output to be

$$
y(t)=e^{-t}[\cos t+\sin t] u(t)-e^{-2 t} u(t) .
$$

(a) [10 marks] Find the transfer function $H(s)$ of the system and its region of convergence. Is the system causal? Is it stable? Justify your answers.

Answer:

First take the Laplace transforms of the input and output signals using the table:

$$
\begin{aligned}
X(s) & =\frac{1}{(s+2)^{2}}, \quad \operatorname{Re}\{s\}>-2 \\
Y(s) & =\underbrace{\frac{s+1}{(s+1)^{2}+1^{2}}}_{\operatorname{Re}\{s\} \gg-1}+\underbrace{\frac{1}{(s+1)^{2}+1^{2}}}_{\operatorname{Re}\{s\}>-1}-\underbrace{\frac{1}{s+2}}_{\operatorname{Re}\{s\}\rangle>-2} \\
& =\underbrace{\frac{s+2}{(s+1)^{2}+1^{2}}}_{\operatorname{Re}\{s\}>-1}-\underbrace{\frac{1}{s+2}}_{\operatorname{Re}\{s\}>-2} \\
& =\frac{\left(s^{2}+4 s+4\right)-\left(s^{2}+2 s+2\right)}{\left(s^{2}+2 s+2\right)(s+2)}, \operatorname{Re}\{s\}>-1 \\
& =\frac{2(s+1)}{\left(s^{2}+2 s+2\right)(s+2)}, \operatorname{Re}\{s\}>-1
\end{aligned}
$$

Then, the transfer function is simply

$$
H(s)=\frac{Y(s)}{X(s)}=\frac{\frac{2(s+1)}{\left(s^{2}+2 s+2\right)(s+2)}}{\frac{1}{(s+2)^{2}}}=\frac{2(s+1)(s+2)}{\left(s^{2}+2 s+2\right)}=2 \frac{s^{2}+3 s+2}{s^{2}+2 s+2}
$$

To determine the ROC, first note that the ROC of $Y(s)$ should contain the intersection of the ROC's of $H(s)$ and $X(s)$. There are two possible ROC's for $H(s):(\mathrm{a})$ an open left half-plane to the left of $\operatorname{Re}\{s\}=-1$, (b) an open right half-plane to the right of $\operatorname{Re}\{s\}=-1$. But since the ROC of $X(s)$ is an open right half-plane to the right of $s=-2$, the only possible choice is (b). Hence, the ROC of $H(s)$ is $\operatorname{Re}\{s\}>-1$.

The system is causal as the transfer function is rational and the ROC is a right half-plane. It is also stable as both complex poles $p_{1,2}=-1 \pm j$ are in the open left half-plane.
(b) [2 marks] Find an LTI differential equation representing the system.

Answer:

It can be derived from the transfer function obtained in (a):

$$
\frac{d^{2} y(t)}{d t^{2}}+2 \frac{d y(t)}{d t}+2 y(t)=2 \frac{d^{2} x(t)}{d t^{2}}+6 \frac{d x(t)}{d t}+4 x(t)
$$

(c) [3 marks] Find the direct form realization of the transfer function $H(s)$.

Answer:

The transfer function can be split up into two systems as follows:

The input-output system equation of the first subsystem is

$$
s^{2} W(s)=-2 s W(s)-2 W(s)+X(s)
$$

and for the second subsystem we have

$$
Y(s)=2 s^{2} W(s)+6 s W(s)+4 W(s) .
$$

The direct form realization of the system is given below:

Problem 5 (15 marks)

(a) [10 marks] Compute the Fourier transform $X(j \omega)$ of the following aperiodic signal $x(t)$ and give its magnitude and phase.

Answer:

$$
\begin{aligned}
X(j \omega) & =\int_{0}^{T} x(t) e^{-j \omega t} d t \\
& =\int_{0}^{T / 2} e^{-j \omega t} d t-\int_{T / 2}^{T} e^{-j \omega t} d t \\
& =\frac{1}{-j \omega}\left(e^{-j \omega \frac{T}{2}}-1\right)+\frac{1}{j \omega}\left(e^{-j \omega T}-e^{-j \omega \frac{T}{2}}\right) \\
& =\frac{1}{j \omega}\left(e^{-j \omega T}-2 e^{-j \omega \frac{T}{2}}+1\right) \\
& =\frac{1}{j \omega}\left(1-e^{-j \omega \frac{T}{2}}\right)^{2}=\frac{1}{j \omega}\left(e^{-j \omega \frac{T}{4}}\left(e^{j \omega \frac{T}{4}}-e^{-j \omega \frac{T}{4}}\right)\right)^{2} \\
& =j \frac{4}{\omega} \sin ^{2}\left(\omega \frac{T}{4}\right) e^{-j \omega \frac{T}{2}}
\end{aligned}
$$

Magnitude:

$$
|X(j \omega)|=\frac{4}{|\omega|} \sin ^{2}\left(\omega \frac{T}{4}\right)
$$

Phase:

$$
\angle X(j \omega)= \begin{cases}-\omega \frac{T}{2}+\frac{\pi}{2}, & \omega>0 \\ -\omega \frac{T}{2}-\frac{\pi}{2}, & \omega<0 \\ 0, & \omega=0\end{cases}
$$

(b) [5 marks] Write the Fourier series coefficients a_{k} of the following rectangular waveform $y(t)$ in terms of $X(j \omega)$ that you obtained in (a) and compute them.

Answer:

We have

$$
\begin{aligned}
a_{k} & =A \frac{1}{T} X\left(j k \frac{2 \pi}{T}\right) \\
& =A \frac{1}{T} j \frac{4}{k \frac{2 \pi}{T}} \sin ^{2}\left(k \frac{2 \pi}{T} \frac{T}{4}\right) e^{-j k \frac{2 \pi}{T} \frac{T}{2}}
\end{aligned}
$$

$$
\begin{aligned}
& =j \frac{2 A}{k \pi} \sin ^{2}\left(k \frac{\pi}{2}\right) e^{-j k \pi}=j \frac{2 A}{k \pi(-2)}\left((-1)^{k}-1\right)(-1)^{k} \\
& =j A \frac{\left((-1)^{k}-1\right)}{k \pi}
\end{aligned}
$$

Problem 6 (10 marks)

Just answer true or false.
(a) The Fourier transform $Z(j \omega)$ of the product of a real even signal $x(t)$ and a real odd signal $y(t)$ is imaginary.
Answer: True.
(b) The system defined by $y(t)=x(t+1)$ is causal.

Answer: False.
(c) The Fourier series coefficients a_{k} of a purely imaginary even periodic signal $x(t)$ have the following property: $a_{k}^{*}=a_{k}$.
Answer: False.
(d) The causal linear discrete-time system defined by $y[n-2]+0.4 y[n-1]-0.45 y[n]=x[n-1]$ is stable.
Answer: False.
(e) The fundamental period of the signal $x[n]=\sin \left(\frac{3 \pi}{5} n\right)$ is 10 .

Answer: True.

