Sample Final Exam (finals03)

Covering Chapters 1-9 and part of Chapter 15 of Fundamentals of Signals \& Systems

Problem 1 (20 marks)

Consider the causal op-amp circuit initially at rest depicted below. Its LTI circuit model with a voltagecontrolled source is also given below.
(a) [8 marks] Transform the circuit using the Laplace transform, and find the transfer function $H_{A}(s)=V_{\text {out }}(s) / V_{\text {in }}(s)$. Then, let the op-amp gain $A \rightarrow+\infty$ to obtain the ideal transfer function $H(s)=\lim _{A \rightarrow+\infty} H_{A}(s)$.

Answer:
The transformed circuit is

There are two supernodes for which the nodal voltages are given by the source voltages. The remaining nodal equation is

$$
\frac{V_{i n}(s)-V_{x}(s)}{R_{2} \| L_{2} s}+\frac{-A V_{x}(s)-V_{x}(s)}{R_{1}\left\|\frac{1}{C s}\right\| L_{1} s}=0
$$

where $R_{1}\left\|\frac{1}{C s}\right\| L_{1} s=\frac{1}{C s+\frac{1}{R_{1}}+\frac{1}{L_{1} s}}=\frac{R_{1} L_{1} s}{R_{1} L_{1} C s^{2}+L_{1} s+R_{1}}$ and $R_{2} \| L_{2} s=\frac{R_{2} L_{2} s}{R_{2}+L_{2} s}$. Simplifying the above equation, we get:

$$
\frac{R_{2}+L_{2} s}{R_{2} L_{2} s} V_{i n}(s)-\left[\frac{(A+1)\left(R_{1} L_{1} C s^{2}+L_{1} s+R_{1}\right)}{R_{1} L_{1} s}+\frac{R_{2}+L_{2} s}{R_{2} L_{2} s}\right] V_{x}(s)=0
$$

Thus, the transfer function between the input voltage and the node voltage is given by

$$
\frac{V_{x}(s)}{V_{i n}(s)}=\frac{\frac{R_{2}+L_{2} s}{R_{2} L_{2} s}}{\frac{(A+1)\left(R_{1} L_{1} C s^{2}+L_{1} s+R_{1}\right)}{R_{1} L_{1} s}+\frac{R_{2}+L_{2} s}{R_{2} L_{2} s}}=\frac{R_{1} L_{1} s\left(R_{2}+L_{2} s\right)}{R_{2} L_{2} s(A+1)\left(R_{1} L_{1} C s^{2}+L_{1} s+R_{1}\right)+R_{1} L_{1} s\left(R_{2}+L_{2} s\right)}
$$

The transfer function between the input voltage and the output voltage is

$$
H_{A}(s)=\frac{V_{\text {out }}(s)}{V_{\text {in }}(s)}=\frac{-A V_{x}(s)}{V_{\text {in }}(s)}=\frac{-A R_{1} L_{1} s\left(R_{2}+L_{2} s\right)}{R_{2} L_{2} s(A+1)\left(R_{1} L_{1} C s^{2}+L_{1} s+R_{1}\right)+R_{1} L_{1} s\left(R_{2}+L_{2} s\right)}
$$

The ideal transfer function is the limit as the op-amp gain tends to infinity:
$H(s)=\lim _{A \rightarrow \infty} H_{A}(s)=-\frac{R_{1} L_{1}\left(R_{2}+L_{2} s\right)}{R_{2} L_{2}\left(R_{1} L_{1} C s^{2}+L_{1} s+R_{1}\right)}=-\frac{L_{1}\left(1+\frac{L_{2}}{R_{2}} s\right)}{L_{2}\left(L_{1} C s^{2}+\frac{L_{1}}{R_{1}} s+1\right)}$
(b) [5 marks] Assume that the circuit has a DC gain of -50 , one zero at -1 and two complex conjugate poles with $\omega_{n}=10 \mathrm{rd} / \mathrm{s}, \zeta=0.5$. Let $L_{1}=10 \mathrm{H}$. Find the values of the remaining circuit components L_{2}, R_{1}, R_{2}, C.

Component values are obtained by setting

$$
H(s)=-50 \frac{s+1}{0.01 s^{2}+0.1 s+1}=-\frac{L_{1}}{L_{2}} \frac{\left(\frac{L_{2}}{R_{2}} s+1\right)}{\left(L_{1} C s^{2}+\frac{L_{1}}{R_{1}} s+1\right)}
$$

which yields $L_{2}=0.2 H, R_{1}=100 \Omega, R_{2}=0.2 \Omega, C=0.001 F$
(c) [7 marks] Give the frequency response of $H(s)$ and sketch its Bode plot.

Answer:

Frequency response is $H(j \omega)=-50 \frac{j \omega+1}{0.01(j \omega)^{2}+0.1(j \omega)+1}$. Bode plot:

Problem 2 (20 marks)

Consider the causal differential system described by

$$
\frac{d^{2} y(t)}{d t^{2}}+2 \frac{d y(t)}{d t}+2 y(t)=2 x(t)
$$

and with initial conditions $\frac{d y\left(0^{-}\right)}{d t}=-1, \quad y\left(0^{-}\right)=2$. Suppose that this system is subjected to the unit step input signal $x(t)=u(t)$.
(a) [8 marks] Find the system's damping ratio ζ and undamped natural frequency ω_{n}. Give the transfer function of the system and specify its ROC. Sketch its pole-zero plot. Is the system stable? Justify.
Ans:
Let's take the unilateral Laplace transform on both sides of the differential equation.

$$
\left[s^{2} \boldsymbol{y}(s)-s y\left(0^{-}\right)-\frac{d y\left(0^{-}\right)}{d t}\right]+2\left[s \boldsymbol{Y}(s)-y\left(0^{-}\right)\right]+2 \boldsymbol{Y}(s)=2 \boldsymbol{X}(s)
$$

Collecting the terms containing $\boldsymbol{\mathcal { Y }}(s)$ on the left-hand side and putting everything else on the righthand side, we can solve for $\mathscr{Y}(s)$.

$$
\begin{aligned}
& \left(s^{2}+2 s+2\right) \mathcal{Y}(s)=2 \mathcal{X}(s)+s y\left(0^{-}\right)+2 y\left(0^{-}\right)+\frac{d y\left(0^{-}\right)}{d t} \\
& \boldsymbol{Y}(s)=\underbrace{\frac{2 \mathcal{X}(s)}{s^{2}+2 s+2}}_{\text {zero-state resp. }}+\underbrace{\frac{(s+2) y\left(0^{-}\right)+\frac{d y\left(0^{-}\right)}{d t}}{s^{2}+2 s+2}}_{\text {zero-input resp. }}
\end{aligned}
$$

The transfer function is $\mathscr{H}(s)=\frac{2}{s^{2}+2 s+2}$,
and since the system is causal, the ROC is an open RHP to the right of the rightmost pole.
The undamped natural frequency is $\omega_{n}=\sqrt{2}$ and the damping ratio is $\zeta=\frac{1}{\sqrt{2}}$. The poles are

$$
p_{1,2}=-\zeta \omega_{n} \pm j \omega_{n} \sqrt{1-\zeta^{2}}=-1 \pm j \sqrt{2} \sqrt{1-\frac{1}{2}}=-1 \pm j .
$$

Therefore the ROC is $\operatorname{Re}\{s\}>-1$. System is stable as jw-axis is contained in ROC. Pole-zero plot:

(b) [8 marks] Compute the step response of the system (including the effect of initial conditions), its steady-state response $y_{s s}(t)$ and its transient response $y_{t r}(t)$ for $t \geq 0$. Identify the zero-state response and the zero-input response in the Laplace domain.
Ans:
The unilateral LT of the input is given by

$$
X(s)=\frac{1}{s}, \quad \operatorname{Re}\{s\}>0
$$

thus

$$
\mathscr{Y}(s)=\underbrace{\frac{2}{\left(s^{2}+2 s+2\right) s}}_{\substack{\text { Ref } s s>0 \\ \text { zero-state resp. }}}+\frac{2 s+3}{\underbrace{s^{2}+2 s+2}_{\substack{\text { Re } f s \ggg-1 \\ \text { zero-input resp. }}}}=\frac{2 s^{2}+3 s+2}{\left(s^{2}+2 s+2\right) s}
$$

Let's compute the overall response:

$$
\begin{aligned}
\boldsymbol{y}(s) & =\frac{2 s^{2}+3 s+2}{\left(s^{2}+2 s+2\right) s}, \quad \operatorname{Re}\{s\}>0 \\
& =\underbrace{\frac{A+B(s+1)}{(s+1)^{2}+1}}_{\operatorname{Re}\{\{s\}>-1}+\underbrace{\frac{C}{s}}_{\operatorname{Re}\{s\}>0} \\
& =\underbrace{\frac{A+B(s+1)}{(s+1)^{2}+1}}_{\operatorname{Re}\{s\}\rangle>-1}+\underbrace{\frac{1}{S}}_{\operatorname{Re}\{s\} \gg 0}
\end{aligned}
$$

Let $s=-1$ to compute $\frac{1}{-1}=\frac{1}{1} A+\frac{1}{-1} \Rightarrow A=0$, then multiply both sides by s and let $s \rightarrow \infty$ to get $2=B+1 \Rightarrow B=1$:

$$
\boldsymbol{y}(s)=\underbrace{\frac{(s+1)}{(s+1)^{2}+1}}_{\operatorname{Re}\{s\}>-1}+\underbrace{\frac{1}{s}}_{\operatorname{Re}\{\{s\}>0}
$$

Notice that the second term $\frac{1}{s}$ is the steady-state response, and thus $y_{s s}(t)=u(t)$.
Taking the inverse Laplace transform using the table yields

$$
y(t)=e^{-t} \cos (t) u(t)+u(t)
$$

Thus, the transient response is $y_{t r}(t)=e^{-t} \cos (t) u(t)$
(c) [4 marks] Compute the percentage of the first overshoot in the step response of the system assumed this time to be initially at rest.
Answer:

Transfer function is $\mathscr{H}(s)=\frac{2}{s^{2}+2 s+2}$, with damping ratio $\zeta=\frac{1}{\sqrt{2}}$:
$O S=100 e^{-\frac{\zeta \pi}{\sqrt{1-\varsigma^{2}}}} \%=100 e^{-\frac{0.707 \pi}{0.707}} \%=100 e^{-\pi} \%=4.3 \%$

Problem 3 (15 marks)

Consider the rectangular waveform $x(t)$ of period T and duty cycle $\frac{2 T_{1}}{T}$. This signal is the input to an LTI system with impulse response $h(t)=t e^{-5 t} u(t)$ and output $y(t)$.

(a) [5 marks] Compute the frequency response $H(j \omega)$ of the LTI system using the Fourier integral. Give expressions for its magnitude $|H(j \omega)|$ and phase $\angle H(j \omega)$ as functions of ω.

The frequency response of the system is given by

$$
\begin{aligned}
H(j \omega) & =\int_{0}^{+\infty} t e^{-5 t} e^{-j \omega t} d t=\int_{0}^{+\infty} t e^{-(5+j \omega) t} d t \\
& =\underbrace{\frac{1}{-(5+j \omega)}\left[t e^{-(5+j \omega) t}\right]_{0}^{+\infty}}_{0}-\frac{1}{-(5+j \omega)} \int_{0}^{+\infty} e^{-(5+j \omega) t} d t \\
& =\frac{1}{-(5+j \omega)^{2}}\left[e^{-(5+j \omega) t}\right]_{0}^{+\infty} \\
& =\frac{1}{(5+j \omega)^{2}}
\end{aligned}
$$

Magnitude:

$$
|H(j \omega)|=\frac{1}{25+\omega^{2}}
$$

Phase:

$$
\angle H(j \omega)=2 \operatorname{atan} 2(-\omega, 5)
$$

(b) [3 marks] Find the Fourier series coefficients a_{k} of the input voltage $x(t)$ for $T=1 s$ and a 40% duty cycle.

The period given corresponds to a signal frequency of 1 Hz , and the 40% duty cycle means that $T_{1}=\frac{2 T}{10}$.
From the lecture notes, we get:

$$
a_{k}=\frac{2}{5} \operatorname{sinc}\left(\frac{2 k}{5}\right)
$$

(c) [3 marks] Compute the Fourier series coefficients b_{k} of the output signal $y(t)$ (for the input described in (b) above), and compute its power spectrum.

We have $\omega_{0}=2 \pi$:

$$
b_{k}=H\left(j k \omega_{0}\right) a_{k}=\frac{2}{5} \operatorname{sinc}\left(\frac{2 k}{5}\right) \frac{1}{\left(5+j k \omega_{0}\right)^{2}}=\frac{2}{5} \operatorname{sinc}\left(\frac{2 k}{5}\right) \frac{1}{(5+j k 2 \pi)^{2}}
$$

The power spectrum of the output signal is

$$
\left|b_{k}\right|^{2}=\frac{4 \operatorname{sinc}^{2}\left(\frac{2 k}{5}\right)}{25\left(25+(k 2 \pi)^{2}\right)^{2}}
$$

(d) [4 marks] Compute the total average power P of the output signal $z(t)$ of the following ideal lowpass filter $H_{l p}(s)$, whose input is $y(t)$ of the above system. The frequency response of $H_{l p}(s)$ is shown below, and its cutoff frequency is $\omega_{c}=5 \pi \mathrm{rd} / \mathrm{s}$.

$$
H_{l p}(j \omega)
$$

Answer:
The filter keeps only the dc components, the first harmonic components at $\pm 2 \pi \mathrm{rd} / \mathrm{s}$ and the second harmonic components at $\pm 4 \pi \mathrm{rd} / \mathrm{s}$. Thus,

$$
\begin{aligned}
& P=\left|b_{0}\right|^{2}+2\left|b_{1}\right|^{2}+2\left|b_{2}\right|^{2} \\
& =\left.\frac{4 \operatorname{sinc}^{2}\left(\frac{2 k}{5}\right)}{25\left(25+\left(k \omega_{0}\right)^{2}\right)^{2}}\right|_{k=0}+\left.2 \frac{4 \operatorname{sinc}^{2}\left(\frac{2 k}{5}\right)}{25\left(25+\left(k \omega_{0}\right)^{2}\right)^{2}}\right|_{k=1}+\left.2 \frac{4 \operatorname{sinc}^{2}\left(\frac{2 k}{5}\right)}{25\left(25+\left(k \omega_{0}\right)^{2}\right)^{2}}\right|_{k=2} \\
& =\frac{4}{25^{3}}+2 \frac{4 \operatorname{sinc}^{2}\left(\frac{2}{5}\right)}{25\left(25+(2 \pi)^{2}\right)^{2}}+2 \frac{4 \operatorname{sinc}^{2}\left(\frac{4}{5}\right)}{25\left(25+(4 \pi)^{2}\right)^{2}} \\
& =\frac{4}{25^{3}}+2 \frac{4 \sin ^{2}\left(\frac{2 \pi}{5}\right)}{25\left(\frac{2 \pi}{5}\right)^{2}\left(25+(2 \pi)^{2}\right)^{2}}+2 \frac{4 \sin ^{2}\left(\frac{4 \pi}{5}\right)}{25\left(\frac{4 \pi}{5}\right)^{2}\left(25+(4 \pi)^{2}\right)^{2}} \\
& =\frac{4}{25^{3}}+2 \frac{\sin ^{2}\left(\frac{2 \pi}{5}\right)}{\pi^{2}\left(25+(2 \pi)^{2}\right)^{2}}+2 \frac{\sin ^{2}\left(\frac{4 \pi}{5}\right)}{(2 \pi)^{2}\left(25+(4 \pi)^{2}\right)^{2}}=0.000256+0.0000441+0.00000052=0.0003
\end{aligned}
$$

Problem 4 (20 marks)

System identification

Suppose that you perform two input-output experiments on an LTI system. In the first experiment, the system has nonzero initial conditions at $t=0$, but the input is set to zero. You record the output in this case to be:

$$
y_{z i}(t)=e^{-t} \cos (t-\pi / 3) u(t)
$$

In the second experiment, the system has the same initial conditions as in the first experiment, but the input is given by:

$$
x(t)=e^{-2 t} u(t)
$$

and you measured the output to be:

$$
y(t)=e^{-t}[\cos t+\sin t] u(t)-e^{-2 t} u(t) .
$$

(a) [10 marks] Find the transfer function $H(s)$ of the system and its region of convergence. Is the system causal? Is it stable? Justify your answers.
Answer:
First, we have to remove the effect of the initials conditions from the output:

$$
\begin{aligned}
y_{z s}(t) & =y(t)-y_{z i}(t)=e^{-t}[\cos t+\sin t] u(t)-e^{-2 t} u(t)-e^{-t} \cos (t-\pi / 3) u(t) \\
& =e^{-t}[\cos t+\sin t] u(t)-e^{-2 t} u(t)-e^{-t} \frac{1}{2}\left(e^{j(t-\pi / 3)}+e^{-j(t-\pi / 3)}\right) u(t) \\
& =e^{-t}[\cos t+\sin t] u(t)-e^{-2 t} u(t)-e^{-t} \frac{1}{2}\left(e^{-j \pi / 3} e^{j t}+e^{j \pi / 3} e^{-j t}\right) u(t) \\
& =e^{-t}[\cos t+\sin t] u(t)-e^{-2 t} u(t)-e^{-t} \operatorname{Re}\left(e^{-j \pi / 3} e^{j t}\right) u(t) \\
& =e^{-t}[\cos t+\sin t] u(t)-e^{-t}[\cos (-\pi / 3) \cos t+\sin (\pi / 3) \sin t] u(t)-e^{-2 t} u(t) \\
& =e^{-t}[\cos t+\sin t] u(t)-e^{-t}\left[0.5 \cos t+\frac{\sqrt{3}}{2} \sin t\right] u(t)-e^{-2 t} u(t) \\
& =e^{-t}\left[0.5 \cos t+\left(1-\frac{\sqrt{3}}{2}\right) \sin t\right] u(t)-e^{-2 t} u(t)
\end{aligned}
$$

Take the Laplace transforms of the input and output signals using the table:

$$
\begin{aligned}
& X(s)=\frac{1}{(s+2)}, \operatorname{Re}\{s\}>-2 \\
Y_{z s}(s) & =\underbrace{\frac{0.5 s+0.5}{(s+1)^{2}+1^{2}}}_{\operatorname{Re}\{s\}\rangle-1}+\underbrace{\frac{0.134}{(s+1)^{2}+1^{2}}}_{\operatorname{Re}\{s\}\rangle>-1}-\underbrace{\frac{1}{s+2}}_{\operatorname{Re}\{s\}>-2} \\
& =\underbrace{\frac{0.5 s+0.634}{(s+1)^{2}+1^{2}}}_{\operatorname{Re}\{\{s\}>-1}-\underbrace{\frac{1}{s+2}}_{\operatorname{Re}\{s\}\}>-2} \\
= & \frac{\left(0.5 s^{2}+1.634 s+1.268\right)-\left(s^{2}+2 s+2\right)}{\left(s^{2}+2 s+2\right)(s+2)}, \operatorname{Re}\{s\}>-1 \\
& =-\frac{0.5 s^{2}+0.366 s+0.732}{\left(s^{2}+2 s+2\right)(s+2)}, \operatorname{Re}\{s\}>-1
\end{aligned}
$$

Then, the transfer function is obtained as follows:

$$
H(s)=\frac{Y_{z s}(s)}{X(s)}=\frac{-\frac{0.5 s^{2}+0.366 s+0.732}{\left(s^{2}+2 s+2\right)(s+2)}}{\frac{1}{(s+2)}}=-\frac{0.5 s^{2}+0.366 s+0.732}{s^{2}+2 s+2}=-\frac{1}{2} \frac{s^{2}+0.732 s+1.464}{s^{2}+2 s+2}
$$

To determine the ROC, first note that the ROC of $Y(s)$ should contain the intersection of the ROC's of $H(s)$ and $X(s)$. There are two possible ROC's for $H(s):(\mathrm{a})$ an open left half-plane to the left of $\operatorname{Re}\{s\}=-1$, (b) an open right half-plane to the right of $\operatorname{Re}\{s\}=-1$. But since the ROC of $X(s)$ is an open right half-plane to the right of $s=-2$, the only possible choice is (b). Hence, the ROC of $H(s)$ is $\operatorname{Re}\{s\}>-1$.

The system is causal as the transfer function is rational and the ROC is a right half-plane. It is also stable as both complex poles $p_{1,2}=-1 \pm j$ are in the open left half-plane.
(b) [4 marks] Find an LTI differential equation representing the system.

Answer:
It can be derived from the transfer function obtained in (a):

$$
\frac{d^{2} y(t)}{d t^{2}}+2 \frac{d y(t)}{d t}+2 y(t)=-0.5 \frac{d^{2} x(t)}{d t^{2}}-0.366 \frac{d x(t)}{d t}-0.732 x(t)
$$

(c) [6 marks] Find the direct form realization of the transfer function $H(s)$.

Answer:
The transfer function can be split up into two systems as follows:

The input-output system equation of the first subsystem is

$$
s^{2} W(s)=-2 s W(s)-2 W(s)+X(s),
$$

and for the second subsystem we have

$$
Y(s)=-0.5 s^{2} W(s)-0.366 s W(s)-0.732 W(s) .
$$

The direct form realization of the system is given below:

Problem 5 (15 marks)

(a) [12 marks] Compute the step response $z[n]$ of the following causal discrete-time LTI system initially at rest:

Answer:
First, by interchanging the first and second block, we can see that the problem is equivalent to computing the impulse response of S_{1} :

The intermediate signal is just the unit impulse:

$$
w[n]=u[n]-u[n-1]=\delta[n] .
$$

Hence, the problem reduces to:

$$
z[n]-0.2 z[n-1]-0.48 z[n-2]=\delta[n]-0.2 \delta[n-1] .
$$

We first compute $h_{a}[n]$:

$$
h_{a}[n]-0.2 h_{a}[n-1]-0.48 h_{a}[n-2]=\delta[n]
$$

The zeros of the characteristic polynomial are 0.8 and -0.6 , so

$$
p(z)=(z-0.8)(z+0.6)=z^{2}-0.2 z-0.48
$$

homogeneous response for $\mathrm{n}>0$:

$$
h_{a}[n]=A(0.8)^{n} u[n]+B(-0.6)^{n} u[n] .
$$

Initial conditions $h_{a}[-1]=0, h_{a}[0]=1$ lead to

$$
\begin{aligned}
& h_{a}[-1]=0=1.250 A-1.667 B \\
& h_{a}[0]=1=A+B \\
& \Rightarrow A=0.571, B=0.429
\end{aligned}
$$

Thus,

$$
h_{a}[n]=0.571(0.8)^{n} u[n]+0.429(-0.6)^{n} u[n]
$$

and finally:

$$
\begin{aligned}
z[n] & =h_{a}[n]-0.2 h_{a}[n-1] \\
& =0.571(0.8)^{n} u[n]+0.429(-0.6)^{n} u[n]-0.1143(0.8)^{n-1} u[n-1]-0.0857(-0.6)^{n-1} u[n-1] \\
& =\delta[n]+\left[0.571-0.1143(0.8)^{-1}\right](0.8)^{n} u[n-1]+\left[0.429-0.0857(-0.6)^{-1}\right](-0.6)^{n} u[n-1] \\
& =\delta[n]+0.428(0.8)^{n} u[n-1]+0.572(-0.6)^{n} u[n-1] \\
& =0.428(0.8)^{n} u[n]+0.572(-0.6)^{n} u[n]
\end{aligned}
$$

(b) [3 marks] Compute the impulse response of the system in (a)

Answer:

The impulse response is the first difference of the step response, so:

$$
\begin{aligned}
h[n] & =z[n]-z[n-1] \\
& =0.428(0.8)^{n} u[n]+0.572(-0.6)^{n} u[n]-0.428(0.8)^{n-1} u[n-1]-0.572(-0.6)^{n-1} u[n-1]
\end{aligned}
$$

Problem 6 (10 marks)

Consider the following sampling system where the sampling frequencies are $\omega_{s 1}=\frac{2 \pi}{T_{1}}, \omega_{s 2}=\frac{2 \pi}{T_{2}}$.

The spectrum $X(j \omega)$ of the input signal $x(t)$, and the frequency responses of the two ideal lowpass filters, are shown below. The gain of the second lowpass filter is $K>0$.

(a) [2 marks] For what range of sampling frequencies $\omega_{s 1}$ is the sampling theorem satisfied for the first sampler (from $x(t)$ to $x_{p}(t)$)?

Answer:

The sampling theorem is satisfied for $\omega_{s 1}>2 W$ for the first sampler.
(b) [2 marks] The cutoff frequencies of the lowpass filters are given by $\omega_{c 1}=3 W, \omega_{c 2}=W$. Assume that the lowest admissible sampling frequency is chosen for the first sampler. For what range of sampling frequencies $\omega_{s 2}$ is the sampling theorem satisfied for the second sampler (from $w(t)$ to $\left.w_{p}(t)\right) ?$
Answer:
The sampling theorem is satisfied for $\omega_{s 2}>6 \mathrm{~W}$.
(c) [6 marks] Choosing the lowest sampling frequencies in the ranges that you found for the two samplers, sketch the spectra $X_{p}(j \omega), W(j \omega), W_{p}(j \omega)$, and $Y(j \omega)$. Find the gain K of the second filter that leads to $y(t)=x(t)$.
Answer:
For the spectra, we set $\omega_{s 1}=2 W$ and $\omega_{s 2}=6 W$, so that $T_{1}=\frac{\pi}{W}, T_{2}=\frac{\pi}{3 W}$:

Finally, $K=\frac{\pi^{2}}{3 W^{2}}$.

