Sample Final Exam (finals01)
 Covering Chapters 1-9 of Fundamentals of Signals \& Systems

Problem 1 (20 marks)

Consider the causal op-amp circuit initially at rest depicted below. Its LTI circuit model with a voltagecontrolled source is also given below.
(a) [8 marks] Transform the circuit using the Laplace transform, and find the transfer function $H_{A}(s)=V_{\text {out }}(s) / V_{\text {in }}(s)$. Then, let the op-amp gain $A \rightarrow+\infty$ to obtain the ideal transfer function $H(s)=\lim _{A \rightarrow+\infty} H_{A}(s)$.

Answer:
The transformed circuit is

There are two supernodes for which the nodal voltages are given by the source voltages. The remaining nodal equation is

$$
\frac{V_{i n}(s)-V_{x}(s)}{R_{1}\left\|\frac{1}{C s}\right\| L_{1} s}+\frac{-A V_{x}(s)-V_{x}(s)}{R_{2} \| L_{2} s}=0
$$

where $R_{1}\left\|\frac{1}{C s}\right\| L_{1} s=\frac{1}{C s+\frac{1}{R_{1}}+\frac{1}{L_{1} s}}=\frac{R_{1} L_{1} s}{R_{1} L_{1} C s^{2}+L_{1} s+R_{1}}$ and $R_{2} \| L_{2} s=\frac{R_{2} L_{2} s}{R_{2}+L_{2} s}$. Simplifying the above equation, we get:

$$
\frac{R_{1} L_{1} C s^{2}+L_{1} s+R_{1}}{R_{1} L_{1} s} V_{i n}(s)-\left[\frac{(A+1)\left(R_{2}+L_{2} s\right)}{R_{2} L_{2} s}+\frac{R_{1} L_{1} C s^{2}+L_{1} s+R_{1}}{R_{1} L_{1} s}\right] V_{x}(s)=0
$$

Thus, the transfer function between the input voltage and the node voltage is given by

$$
\begin{aligned}
\frac{V_{x}(s)}{V_{i n}(s)} & =\frac{\frac{R_{1} L_{1} C s^{2}+L_{1} s+R_{1}}{R_{1} L_{1} s}}{\frac{(A+1)\left(R_{2}+L_{2} s\right)}{R_{2} L_{2} s}+\frac{R_{1} L_{1} C s^{2}+L_{1} s+R_{1}}{R_{1} L_{1} s}} \\
& =\frac{R_{2} L_{2} s\left(R_{1} L_{1} C s^{2}+L_{1} s+R_{1}\right)}{R_{1} L_{1} s(A+1)\left(R_{2}+L_{2} s\right)+R_{2} L_{2} s\left(R_{1} L_{1} C s^{2}+L_{1} s+R_{1}\right)}
\end{aligned}
$$

The transfer function between the input voltage and the output voltage is

$$
H_{A}(s)=\frac{V_{\text {out }}(s)}{V_{\text {in }}(s)}=\frac{-A V_{x}(s)}{V_{\text {in }}(s)}=\frac{-A R_{2} L_{2} s\left(R_{1} L_{1} C s^{2}+L_{1} s+R_{1}\right)}{R_{1} L_{1} s(A+1)\left(R_{2}+L_{2} s\right)+R_{2} L_{2} s\left(R_{1} L_{1} C s^{2}+L_{1} s+R_{1}\right)}
$$

The ideal transfer function is the limit as the op-amp gain tends to infinity:
$H(s)=\lim _{A \rightarrow \infty} H_{A}(s)=-\frac{R_{2} L_{2}\left(R_{1} L_{1} C s^{2}+L_{1} s+R_{1}\right)}{R_{1} L_{1}\left(R_{2}+L_{2} s\right)}=-\frac{L_{2}\left(L_{1} C s^{2}+\frac{L_{1}}{R_{1}} s+1\right)}{L_{1}\left(1+\frac{L_{2}}{R_{2}} s\right)}$
(b) [5 marks] The circuit is used as a cascade equalizer for the system
$G(s)=-50 \frac{s+1}{0.01 s^{2}+0.1 s+1}$, that is, $|G(j \omega) H(j \omega)|=0 d B, \forall \omega$. Let $L_{1}=10 H$. Find the values of the remaining circuit components L_{2}, R_{1}, R_{2}, C.

Component values are obtained by setting

$$
H(s)=G^{-1}(s)=-0.02 \frac{0.01 s^{2}+0.1 s+1}{s+1}=-\frac{L_{2}}{L_{1}} \frac{\left(L_{1} C s^{2}+\frac{L_{1}}{R_{1}} s+1\right)}{\left(\frac{L_{2}}{R_{2}} s+1\right)}
$$

which yields $\Leftrightarrow L_{2}=0.2 H, R_{1}=100 \Omega, R_{2}=0.2 \Omega, C=0.001 F$
(c) [7 marks] Sketch the Bode plot of $H(s)$ and $G(s)$ (magnitude only, both on the same plot).

Magnitude Bode plot of $\quad G(j \omega)=-50 \frac{j \omega+1}{0.01(j \omega)^{2}+0.1(j \omega)+1} \quad$ and desired $H(j \omega)=-0.02 \frac{0.01(j \omega)^{2}+0.1(j \omega)+1}{j \omega+1}:$

Problem 2 (20 marks) Digital Signal Generator

A programmable digital signal generator generates a sinusoidal waveform by LTI filtering of a staircase approximation to a sine wave $x(t)$.

(a) [9 marks] Find the Fourier series coefficients a_{k} of the periodic signal $x(t)$. Show that the even harmonics vanish. Express $x(t)$ as a Fourier series.

Answer:
First of all, the average over one period is 0 , so $a_{0}=0$. For $k \neq 0$,

$$
\begin{aligned}
a_{k} & =\frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} x(t) e^{-j k \frac{2 \pi}{T} t} d t \\
& =-\frac{A}{2 T} \int_{-\frac{T}{2}}^{-\frac{T}{3}} e^{-j k \frac{2 \pi}{T} t} d t-\frac{A}{T} \int_{-\frac{T}{3}}^{-\frac{T}{6}} e^{-j k \frac{2 \pi}{T} t} d t-\frac{A}{2 T} \int_{-\frac{T}{6}}^{0} e^{-j k \frac{2 \pi}{T} t} d t \\
& +\frac{A}{2 T} \int_{\frac{T}{3}}^{\frac{T}{2}} e^{-j k \frac{2 \pi}{T} t} d t+\frac{A}{T} \int_{\frac{T}{6}}^{\frac{T}{3}} e^{-j k \frac{2 \pi}{T} t} d t+\frac{A}{2 T} \int_{0}^{\frac{T}{6}} e^{-j k \frac{2 \pi}{T} t} d t \\
& =\frac{A}{2 T} \int_{0}^{\frac{T}{6}}\left(e^{-j k \frac{2 \pi}{T} t}-e^{j k \frac{2 \pi}{T} t}\right) d t+\frac{A}{2 T} \int_{\frac{T}{3}}^{\frac{T}{2}}\left(e^{-j k \frac{2 \pi}{T} t}-e^{j k \frac{2 \pi}{T} t}\right) d t+\frac{A}{T} \int_{\frac{T}{6}}^{\frac{T}{3}}\left(e^{-j k \frac{2 \pi}{T} t}-e^{j k \frac{2 \pi}{T} t}\right) d t \\
& =\frac{-j A}{T} \int_{0}^{\frac{T}{6}} \sin \left(k \frac{2 \pi}{T} t\right) d t-\frac{j 2 A}{T} \int_{\frac{T}{6}}^{\frac{T}{3}} \sin \left(k \frac{2 \pi}{T} t\right) d t-\frac{j A}{T} \int_{\frac{T}{3}}^{\frac{T}{2}} \sin \left(k \frac{2 \pi}{T} t\right) d t \\
& =\frac{j A}{T}\left(\frac{T}{2 \pi k}\right) \cos \left(k \frac{2 \pi}{T} t\right)_{0}^{\frac{T}{6}}+\frac{j 2 A}{T}\left(\frac{T}{2 \pi k}\right) \cos \left(k \frac{2 \pi}{T} t\right)_{\frac{T}{6}}^{\frac{T}{3}}+\frac{j A}{T}\left(\frac{T}{2 \pi k}\right) \cos \left(k \frac{2 \pi}{T} t\right)_{\frac{T}{3}}^{\frac{T}{2}} \\
& =\frac{j A}{2 \pi k}\left[\cos \left(k \frac{\pi}{3}\right)-1+2 \cos \left(k \frac{2 \pi}{3}\right)-2 \cos \left(k \frac{\pi}{3}\right)+\cos (k \pi)-\cos \left(k \frac{2 \pi}{3}\right)\right] \\
& =\frac{j A}{2 \pi k}\left[-\cos \left(k \frac{\pi}{3}\right)+\cos \left(k \frac{2 \pi}{3}\right)-1+\cos (k \pi)\right]
\end{aligned}
$$

Note that the coefficients are purely imaginary, which is consistent with our real, odd signal. The even FS coefficients are for $k=2 m, m=1,2, \ldots$:

$$
\begin{aligned}
a_{k} & =a_{2 m}=\frac{j A}{2 \pi 2 m}\left[-\cos \left(m \frac{2 \pi}{3}\right)+\cos \left(m \frac{4 \pi}{3}\right)-1+\cos (m 2 \pi)\right] \\
& =\frac{j A}{2 \pi 2 m}\left[-\cos \left(-m \frac{\pi}{3}+m \pi\right)+\cos \left(m \frac{\pi}{3}+m \pi\right)\right] \\
& =\frac{j A}{2 \pi 2 m}\left[-\cos \left(m \frac{\pi}{3}-m \pi\right)+\cos \left(m \frac{\pi}{3}+m \pi\right)\right] \\
& =\frac{j A}{2 \pi 2 m}\left[-\cos \left(m \frac{\pi}{3}+m \pi\right)+\cos \left(m \frac{\pi}{3}+m \pi\right)\right]=0
\end{aligned}
$$

The Fourier series representation of $x(t)$ is

$$
x(t)=\sum_{k=-\infty}^{+\infty} a_{k} e^{j k \frac{2 \pi}{T} t}=\sum_{\substack{k=-\infty \\ k \neq 0}}^{+\infty} \frac{j A}{2 \pi k}\left[-\cos \left(k \frac{\pi}{3}\right)+\cos \left(k \frac{2 \pi}{3}\right)-1+\cos (k \pi)\right] e^{j k \frac{2 \pi}{T} t} .
$$

(b) [3 marks] Write $x(t)$ using the real form of the Fourier series.
$x(t)=a_{0}+2 \sum_{k=1}^{+\infty}\left[B_{k} \cos \left(k \omega_{0} t\right)-C_{k} \sin \left(k \omega_{0} t\right)\right]$
Answer:
Recall that the C_{k} coefficients are the imaginary parts of the a_{k} 's. Hence

$$
x(t)=\sum_{k=1}^{+\infty} \frac{-A}{\pi k}\left[-\cos \left(k \frac{\pi}{3}\right)+\cos \left(k \frac{2 \pi}{3}\right)-1+\cos (k \pi)\right] \sin \left(k \omega_{0} t\right) .
$$

(c) [2 marks] Design an ideal lowpass filter that will produce the perfect sinusoidal waveform $y(t)=\sin \frac{2 \pi}{T} t$ at its output with $x(t)$ as its input. Sketch its frequency response and specify its gain K and cutoff frequency ω_{c}.

Answer:

The cutoff should be between the fundamental and the second harmonic, say $\omega_{c}=\frac{3 \pi}{T}$. The gain should be $K=\frac{-\pi}{A}\left[-\cos \left(\frac{\pi}{3}\right)+\cos \left(\frac{2 \pi}{3}\right)-1+\cos (\pi)\right]^{-1}=\frac{-\pi}{A}\left[-\frac{1}{2}-\frac{1}{2}-2\right]^{-1}=\frac{\pi}{3 A}$.
(d) [6 marks] Now suppose that the first-order lowpass filter whose differential equation is given below is used to filter $x(t)$.

$$
\tau \frac{d}{d t} y(t)+y(t)=B x(t)
$$

where the time constant is chosen to be $\tau=\frac{T}{2 \pi}$. Give the Fourier series representation of the output $y(t)$. Compute the total average power in the fundamental components $P_{1 t o t}$ and in the third harmonic components $P_{3 t o t}$. Find the value of the dc gain B such that the output $w(t)$ produced by the fundamental harmonic of the real Fourier series of $x(t)$ has unit amplitude.

Answer:

$$
\begin{gathered}
H(s)=\frac{B}{\tau s+1} \\
H(j \omega)=\frac{B}{\tau j \omega+1} \\
y(t)=\sum_{k=-\infty}^{+\infty} a_{k} H\left(j k \frac{2 \pi}{T}\right) e^{j k 2 \pi t}=\sum_{\substack{k=-\infty \\
k \neq 0}}^{+\infty} \frac{B}{j k+1} \frac{j A}{2 \pi k}\left[-\cos \left(k \frac{\pi}{3}\right)+\cos \left(k \frac{2 \pi}{3}\right)-1+\cos (k \pi)\right] e^{j k \frac{2 \pi}{T} t}
\end{gathered}
$$

Power:

$$
\begin{aligned}
P_{1 \text { tot }} & =2\left|\frac{B}{j+1} \frac{j A}{2 \pi}\left[-\cos \left(\frac{\pi}{3}\right)+\cos \left(\frac{2 \pi}{3}\right)-1+\cos (\pi)\right]\right|^{2} \\
& =2\left|\frac{B}{j+1} \frac{j A}{2 \pi}\left[-\frac{1}{2}-\frac{1}{2}-2\right]\right|^{2}=2\left|\frac{B}{j+1} \frac{j 3 A}{2 \pi}\right| \\
& =B^{2}\left|\frac{3 A}{2 \pi}\right|^{2}=\frac{9 A^{2} B^{2}}{4 \pi^{2}} \\
P_{3 \text { tot }} & =2\left|\frac{B}{j 3+1} \frac{j A}{2 \pi}[-\cos (\pi)+\cos (2 \pi)-1+\cos (\pi)]\right|^{2} \\
& =2\left|\frac{B}{j 3+1} \frac{j A}{2 \pi}[0]\right|^{2}=0
\end{aligned}
$$

DC gain B :
We found that the gain at ω_{0} should be

$$
\begin{aligned}
& \frac{\pi}{3 A}=\left|H\left(j \omega_{0}\right)\right|=\frac{B}{\left|\tau j \omega_{0}+1\right|}=\frac{B}{\sqrt{\left(\tau \omega_{0}\right)^{2}+1}} \\
& \Leftrightarrow B=\frac{\pi \sqrt{\left(\tau \omega_{0}\right)^{2}+1}}{3 A}
\end{aligned}
$$

Problem 3 (15 marks)

Compute the response $y[n]$ of an LTI system described by its impulse response $h[n]$ shown below and whose magnitude from a time instant to the next decays by 0.9 on its support. The input signal $x[n]$ is the rectangular pulse shown below shown below. Give a mathematical expression for $h[n]$.

Mathematical expression for impulse response: $h[n]=(-0.9)^{(n+2)} u[n+2]$
We break down the problem into 3 intervals for n.

For $n<-2: h[n-k]$ is zero for $k>=0$, hence $g[k]=h[k] x[n-k]=0 \forall k$ and $y[n]=0$.
For $-2 \leq n \leq 1$: Then $g[k]=h[k] x[n-k] \neq 0$ for $k=0, \ldots, n+2$. We get

$$
\begin{aligned}
y[n] & =\sum_{k=0}^{n+2} g[k]=\sum_{k=0}^{n+2}(-0.9)^{n-k+2}=(-0.9)^{n+2} \sum_{k=0}^{n+2}(-0.9)^{-k} \\
& =(-0.9)^{n+2} \sum_{k=0}^{n+2}\left(-\frac{10}{9}\right)^{k}=(-0.9)^{n+2}\left(\frac{1-(-0.9)^{-n-3}}{1-(-0.9)^{-1}}\right) \\
& =\frac{(-0.9)^{n+2}-(-0.9)^{-1}}{1-(-0.9)^{-1}}=\frac{(-0.9)^{n+3}-1}{-1.9}
\end{aligned}
$$

For $n \geq 2$: Then $g[k]=h[k] x[n-k] \neq 0$ for $k=0, \ldots, 4$. We get

$$
\begin{aligned}
y[n] & =\sum_{k=0}^{3} g[k]=\sum_{k=0}^{3}(-0.9)^{n-k+2}=(-0.9)^{n+2} \sum_{k=0}^{3}(-0.9)^{-k} \\
& =(-0.9)^{n+2}\left(\frac{1-(-0.9)^{-4}}{1-(-0.9)^{-1}}\right) \\
& =\frac{(-0.9)^{n+2}-(-0.9)^{n-2}}{1-(-0.9)^{-1}}
\end{aligned}
$$

In summary, the output signal of the LTI system is

$$
y[n]= \begin{cases}0, & n<-2 \\ \frac{(-0.9)^{n+3}-1}{-1.9}, & -2 \leq n<1 \\ \frac{(-0.9)^{n+2}-(-0.9)^{n-2}}{1-(-0.9)^{-1}}, & 2 \leq n\end{cases}
$$

Problem 4 (10 marks)

The unit step response of an LTI system was measured to be

$$
s(t)=2 e^{-\sqrt{3} t} \sin \left(t-\frac{\pi}{6}\right) u(t)+u(t)-t u(t) .
$$

(a) [6 marks] Find the transfer function $H(s)$ of the system. Specify its ROC. Sketch its pole-zero plot.

$$
\begin{aligned}
& H(s)=s S(s)=s \mathcal{L}\left[2 e^{-\sqrt{3} t} \sin \left(t-\frac{\pi}{6}\right) u(t)+u(t)-t u(t)\right] \\
& =s \mathcal{L}\left[2 e^{-\sqrt{3 t}}\left(\frac{e^{j\left(t-\frac{\pi}{6}\right)}-e^{-j\left(t-\frac{\pi}{6}\right)}}{2 j}\right) u(t)+u(t)-t u(t)\right] \\
& =s \mathcal{L}\left[2 e^{-\sqrt{3} t}\left(\frac{\left(\frac{\sqrt{3}}{2}-j \frac{1}{2}\right) e^{j t}-\left(\frac{\sqrt{3}}{2}+j \frac{1}{2}\right) e^{-j t}}{2 j}\right) u(t)+u(t)-t u(t)\right] \\
& =s \mathcal{L}\left[\left(\frac{\left(\frac{\sqrt{3}}{2}-j \frac{1}{2}\right) e^{-\sqrt{3} t+j t}-\left(\frac{\sqrt{3}}{2}+j \frac{1}{2}\right) e^{-\sqrt{3} t-j t}}{j}\right) u(t)+u(t)-t u(t)\right] \\
& =s \mathcal{L}\left[\left(\frac{\left(\frac{\sqrt{3}}{2} e^{-\sqrt{3} t+j t}-\frac{\sqrt{3}}{2} e^{-\sqrt{3} t-j t}\right)-j \frac{1}{2} e^{-\sqrt{3} t+j t}-j \frac{1}{2} e^{-\sqrt{3} t-j t}}{j}\right) u(t)+u(t)-t u(t)\right] \\
& =s \mathcal{L}\left[\left(\sqrt{3} e^{-\sqrt{3} t} \sin t-e^{-\sqrt{3} t} \cos t\right) u(t)+u(t)-t u(t)\right] \\
& =s\left[\frac{\sqrt{3}}{(s+\sqrt{3})^{2}+1}-\frac{s+\sqrt{3}}{(s+\sqrt{3})^{2}+1}+\frac{1}{s}-\frac{1}{s^{2}}\right] \\
& =\frac{-s^{3}+\left[(s+\sqrt{3})^{2}+1\right](s-1)}{s\left[(s+\sqrt{3})^{2}+1\right]} \\
& =\frac{-s^{3}+\left[s^{2}+2 \sqrt{3} s+4\right](s-1)}{s\left[(s+\sqrt{3})^{2}+1\right]} \\
& =\frac{(2 \sqrt{3}-1) s^{2}+(4-2 \sqrt{3}) s-4}{s\left[(s+\sqrt{3})^{2}+1\right]}=\frac{(2 \sqrt{3}-1)\left[s^{2}+\frac{(4-2 \sqrt{3})}{(2 \sqrt{3}-1)} s-\frac{4}{(2 \sqrt{3}-1)}\right]}{s\left[(s+\sqrt{3})^{2}+1\right]} \\
& \text { ROC: } \operatorname{Re}\{s\}>0 \text {. }
\end{aligned}
$$

$$
p_{1}=0 \quad z_{1}=-1.3875,
$$

Poles are $p_{2}=-\sqrt{3}+j$, Zeros are zeros of $s^{2}+0.21748 s-1.62331: \quad z_{2}=1.1700$

$$
p_{3}=-\sqrt{3}-j \quad z_{3}=\infty
$$

(b) [2 marks] Is the system causal? Is it stable? Justify your answers.

Answer:
System is causal: ROC is an open RHP and transfer function is rational.
This system isn't stable as ROC doesn't include the imaginary axis (or because rightmost pole 0 has a nonnegative real part.)
(c) [2 marks] Give the direct form realization (block diagram) of $H(s)$.

Answer:
$H(s)=\frac{(2 \sqrt{3}-1) s^{2}+(4-2 \sqrt{3}) s-4}{s^{3}+2 \sqrt{3} s^{2}+4 s}$

Problem 5 (5 marks)

True or False?
(a) The Fourier transform $Z(j \omega)$ of the convolution of a real even signal $x(t)$ and a real odd signal $y(t)$ is imaginary even.
Answer: False.
(b) The system defined by $y(t)=t x(t)$ is time-invariant.

Answer: False.
(c) The Fourier series coefficients b_{k} of the periodic signal $y(t)=x(10 t)$ are given by $b_{k}=\frac{1}{10} a_{k}$, where $x(t) \stackrel{\text { FS }}{\leftrightarrow} a_{k}$.
Answer: False.
(d) The Fourier transform $X(j \omega)$ of the product of a real signal $x(t)$ and an impulse $\delta(t)$ is real. Answer: True.
(e) The fundamental period of the signal $x[n]=\sin \left(\frac{3 \pi}{5} n\right) \cos \left(\frac{2 \pi}{3} n\right)$ is 60 .

Answer: False. ($N=30$)

Problem 6 (15 marks)

The following circuit has initial conditions on the capacitor $v_{C}\left(0^{-}\right)$and inductor $i_{L}\left(0^{-}\right)$.

(a) [3 marks] Transform the circuit using the unilateral Laplace transform.

Answer:

(b) [6 marks] Find the unilateral Laplace transform of $v(t)$.

Answer:

Let's use mesh analysis.
For mesh 1:

$$
\begin{aligned}
& \boldsymbol{V}_{s}(s)-\frac{1}{C s} \mathcal{J}_{1}(s)-\frac{1}{s} v_{c}\left(0^{-}\right)-R_{1}\left[\mathcal{J}_{1}(s)-\mathcal{J}_{2}(s)\right]=0 \\
& \Rightarrow \mathcal{J}_{2}(s)=-\frac{1}{R_{1}} \boldsymbol{v}_{s}(s)+\frac{1}{R_{1} s} v_{c}\left(0^{-}\right)+\left(1+\frac{1}{R_{1} C s}\right) \mathcal{J}_{1}(s)
\end{aligned}
$$

For mesh 2:

$$
\begin{aligned}
& R_{1}\left[\mathcal{I}_{1}(s)-\mathcal{J}_{2}(s)\right]-\left(R_{2}+L s\right) \mathcal{J}_{2}(s)+L i_{L}\left(0^{-}\right)=0 \\
& \Rightarrow \quad \mathcal{J}_{1}(s)=\frac{1}{R_{1}}\left(R_{1}+R_{2}+L s\right) \mathscr{J}_{2}(s)-\frac{L}{R_{1}} i_{L}\left(0^{-}\right)
\end{aligned}
$$

Substituting, we obtain

$$
\begin{aligned}
& \mathcal{J}_{2}(s)=-\frac{1}{R_{1}} \boldsymbol{v}_{s}(s)+\frac{1}{R_{1} s} v_{c}\left(0^{-}\right)+\left(1+\frac{1}{R_{1} C s}\right)\left[\frac{1}{R_{1}}\left(R_{1}+R_{2}+L s\right) \mathcal{J}_{2}(s)-\frac{L}{R_{1}} i_{L}\left(0^{-}\right)\right] \\
& {\left[R_{1}^{2} C s-\left(1+R_{1} C s\right)\left(R_{1}+R_{2}+L s\right)\right] \mathcal{J}_{2}(s)=-R_{1} C s \boldsymbol{v}_{s}(s)+R_{1} C v_{c}\left(0^{-}\right)-\left(1+R_{1} C s\right) L i_{L}\left(0^{-}\right)} \\
& -\left[L R_{1} C s^{2}+\left(L+R_{1} R_{2} C\right) s+R_{1}+R_{2}\right] \mathcal{J}_{2}(s)=-R_{1} C s \boldsymbol{v}_{s}(s)+R_{1} C v_{c}\left(0^{-}\right)-\left(1+R_{1} C s\right) L i_{L}\left(0^{-}\right)
\end{aligned}
$$

Solving for $\mathscr{J}_{2}(s)$, we get

$$
\mathcal{J}_{2}(s)=\frac{R_{1} C s \boldsymbol{v}_{s}(s)}{L R_{1} C s^{2}+\left(L+R_{1} R_{2} C\right) s+R_{1}+R_{2}}+\frac{\left(1+R_{1} C s\right) L i_{L}\left(0^{-}\right)-R_{1} C v_{c}\left(0^{-}\right)}{L R_{1} C s^{2}+\left(L+R_{1} R_{2} C\right) s+R_{1}+R_{2}}
$$

And finally the output voltage is
$\boldsymbol{v}(s)=R_{2} \mathcal{J}_{2}(s)=\frac{R_{1} R_{2} C s \boldsymbol{v}_{s}(s)}{L R_{1} C s^{2}+\left(L+R_{1} R_{2} C\right) s+R_{1}+R_{2}}+\frac{R_{2}\left(1+R_{1} C s\right) L i_{L}\left(0^{-}\right)-R_{1} R_{2} C v_{c}\left(0^{-}\right)}{L R_{1} C s^{2}+\left(L+R_{1} R_{2} C\right) s+R_{1}+R_{2}}$
(c) [6 marks] Draw the Bode plot (magnitude and phase) of the frequency response from the input voltage $\mathcal{V}_{s}(j \omega)$ to the output voltage $\mathcal{V}(j \omega)$. Assume that the initial conditions on the capacitor and the inductor are 0 . Use the numerical values: $R_{1}=1 \Omega, R_{2}=\frac{109}{891} \Omega, L=\frac{1}{891} \mathrm{H}, C=1 \mathrm{~F}$.

Answer:
For the values given, the transfer function from the source voltage to the output voltage is

$$
\begin{aligned}
\mathscr{H}(s) & :=\frac{\mathcal{V}(s)}{\boldsymbol{V}_{s}(s)}=\frac{\frac{R_{2}}{L} s}{s^{2}+\frac{L+R_{1} R_{2} C}{L R_{1} C} s+\frac{R_{1}+R_{2}}{L R_{1} C}} \\
& =\frac{109 s}{s^{2}+\frac{\frac{1}{891}+\frac{109}{891}}{\frac{1911}{891}} s+\frac{1+\frac{109}{891}}{\frac{1}{891}}} \\
& =\frac{109 s}{s^{2}+110 s+1000} \\
& =\frac{109 s}{(s+10)(s+100)} \\
& =0.109 \frac{s}{\left(\frac{1}{10} s+1\right)\left(\frac{1}{100} s+1\right)}
\end{aligned}
$$

Bode Plot:

Problem 7 (15 marks)

A classical technique to control the position of an inertial load (e.g., a robot arm) driven by a permanent-magnet DC motor is to vary the armature current based on a potentiometer measurement of the robot's joint angle $\theta(t)$, as shown in the diagram below.

Before closing the feedback loop, we first look at the open-loop dynamics of this system in (a) and (b).
The torque $\tau(t)$ in Newton-metres applied to the load by the motor is proportional to the armature current in Amps:

$$
\tau(t)=A i_{a}(t) .
$$

The robot arm is modeled as an inertia J with viscous friction represented by the coefficient b. The equation of movement for the load is

$$
J \frac{d^{2} \theta(t)}{d t^{2}}+b \frac{d \theta(t)}{d t}=\tau(t)
$$

(a) [2 marks] Assume that the system is initially at rest. Find the open-loop transfer function $G(s):=\Theta(s) / I_{a}(s)$ relating the joint angle $\Theta(s)$ to the motor's armature current input $I_{a}(s)$.

Answer:

$$
G(s)=\frac{\Theta(s)}{I_{a}(s)}=\frac{A}{s(J s+b)}
$$

(b) [6 marks] Assume that $A=1 \mathrm{Nm} / \mathrm{A}, J=1 \mathrm{Nm} / \mathrm{rd} / \mathrm{s}^{2}$ and $b=1 \mathrm{Nm} / \mathrm{rd} / \mathrm{s}$. Compute the open-loop unit step response $s_{\omega}(t)$ of the load's angular velocity $\omega(t)=\frac{d \theta(t)}{d t}$ for a unit step in armature current. What is the $\pm 5 \%$ settling time t_{s} (an approximation is OK)?

Answer:

$$
G_{\omega}(s)=\frac{s \Theta(s)}{I_{a}(s)}=\frac{1}{s+1}
$$

The unit step response $s_{\omega}(t)$ is given by

$$
S_{\omega}(s)=\frac{1}{s} G_{\omega}(s)=\frac{\Theta(s)}{I_{a}(s)}=\frac{1}{s(s+1)}=\frac{1}{s(s+1)}=\frac{1}{s}-\frac{1}{s+1}
$$

Taking the inverse Laplace transform, we get

$$
s_{\omega}(t)=\left(1-e^{-t}\right) u(t)
$$

The $\pm 5 \%$ settling time is approximately equal to three time constants: $t_{s} \approx 3 \mathrm{~s}$.
(c) [7 marks] Based on the above figure, find the gain B of the joint angle sensor (potentiometer) in Volts/radian. Assume, as shown in the figure above, that there is a gain B^{-1} in the feedback path canceling out the sensor gain, and thus the link angle $\theta(t)$ is measured perfectly, i.e., $\theta_{m}(t)=\theta(t)$. We want to analyze the feedback controller $K(s)=\lambda(s+\alpha)$ to control the robot's joint angle. That is, we want $\theta(t)$ to track the desired angle $\theta_{d}(t)$.

Answer:
Sensor gain is $B=\frac{10}{\pi} V / r d$

Find the closed-loop transfer function $H(s):=\Theta(s) / \Theta_{d}(s)$. Find expressions for the closed-loop damping ratio ζ and undamped natural frequency ω_{n} in terms of the controller parameters α and λ. For $\alpha=4$, find a value of λ that will result in a closed-loop damping ratio of $\zeta=\frac{1}{\sqrt{2}}$.

Closed-loop transfer function:

$$
\begin{aligned}
H(s) & =\frac{K(s) G(s)}{1+K(s) G(s)} \\
& =\frac{\frac{\lambda(s+\alpha)}{s(s+1)}}{1+\frac{\lambda(s+\alpha)}{s(s+1)}} \\
& =\frac{\lambda(s+\alpha)}{s(s+1)+\lambda(s+\alpha)} \\
& =\frac{\lambda(s+\alpha)}{s^{2}+(1+\lambda) s+\alpha \lambda}
\end{aligned}
$$

We get $\omega_{n}=\sqrt{\alpha \lambda}$ and $\zeta=\frac{1+\lambda}{2 \sqrt{\alpha \lambda}}$.
For $\alpha=4$ and given $\zeta=\frac{1}{\sqrt{2}}$, we have:

$$
\begin{aligned}
& \zeta=\frac{1}{\sqrt{2}}=\frac{1+\lambda}{2 \sqrt{4 \lambda}} \\
& \Rightarrow \frac{1}{2}=\frac{(1+\lambda)^{2}}{16 \lambda} \Rightarrow 8 \lambda=1+2 \lambda+\lambda^{2} \\
& \Rightarrow 1-6 \lambda+\lambda^{2}=0 \\
& \Rightarrow \lambda_{1,2}=\frac{6 \pm \sqrt{36-4}}{2}=3 \pm 2 \sqrt{2}
\end{aligned}
$$

both values are positive (for stability) and hence acceptable.

