Solutions to Problems in Chapter 8

Problems with Solutions

Problem 8.1

Sketch the pole-zero plots in the s-plane and the Bode plots (magnitude and phase) for the following systems. Specify if the transfer functions have poles or zeros at infinity.
(a) $H(s)=\frac{100(s-1)(s+10)}{(s+100)^{2}}, \operatorname{Re}\{s\}>-100$.

Answer:

$$
H(s)=\frac{100(s-1)(s+10)}{(s+100)^{2}}=H(s)=\frac{-0.1(-s+1)(s / 10+1)}{(0.01 s+1)(0.01 s+1)}, \operatorname{Re}\{s\}>-100
$$

Break frequencies at $\omega_{1}=1, \omega_{2}=10$ (zeros); $\omega_{3}=100$ (double pole). The pole-zero plot is shown in Figure 8.1, and the Bode plot is in Figure 8.2.

Figure 8.1: Pole-zero plot of transfer function of Problem 8.1(a).

Figure 8.2: Bode plot of transfer function of Problem 8.1(a).
(b) $H(s)=\frac{s+10}{s(0.001 s+1)}, \operatorname{Re}\{s\}>0$.

Answer:
$H(s)=\frac{s+10}{s(0.001 s+1)}=\frac{10(s / 10+1)}{s(s / 1000+1)}, \operatorname{Re}\{s\}>0$.

The pole-zero plot is given in Figure 8.3.

Figure 8.3: Pole-zero plot of transfer function of Problem 8.1(b).
The break frequencies are $\omega_{1}=10$ (zero); $\omega_{2}=0, \omega_{3}=1000$ (poles), and the transfer function has one zero at ∞. The Bode plot is shown in Figure 8.4.

Figure 8.4: Bode plot of transfer function of Problem 8.1(b).
(c) $H(s)=\frac{s^{2}+2 s+1}{(s+100)\left(s^{2}+10 s+100\right)}, \operatorname{Re}\{s\}>-5$

Answer:

We can write the transfer function as follows:

$$
H(s)=\frac{0.0001(s+1)^{2}}{(0.01 s+1)\left(0.01 s^{2}+0.1 s+1\right)}=\frac{0.0001(s+1)^{2}}{(0.01 s+1)(s+5-j 5 \sqrt{3})(s+5+j 5 \sqrt{3})}, \operatorname{Re}\{s\}>-5
$$

The pole zero plot is shown in Figure 8.5, and the Bode plot is in Figure 8.6.

Figure 8.5: Pole-zero plot of transfer function of Problem 8.1(c).

Figure 8.6: Bode plot of transfer function of Problem 8.1(c).

Problem 8.2

Consider the mechanical system of Figure 8.7 consisting of a mass m attached to a spring of stiffness k and a viscous damper (dashpot) of damping factor b, both rigidly connected to ground. This basic system model is quite useful to study a number of systems, including a car's suspension, or a flexible robot link.

Figure 8.7: Mass-spring-damper system of Problem 8.2.
Assume that the mass-spring-damper system is initially at rest, which means that the spring generates a force equal to the force of gravity to support the mass. The balance of forces on the mass causing motion is the following:

$$
x(t)-F_{k}(t)-F_{b}(t)=m \ddot{y}(t) .
$$

(a) Write the differential equation governing the motion of the mass.

Answer:

$$
m \ddot{y}(t)+b \dot{y}(t)+k y(t)=x(t)
$$

(b) Find the transfer function of the system relating the applied force to the mass position. Express it in the form $H(s)=\frac{A \omega_{n}^{2}}{s^{2}+2 \varsigma \omega_{n} s+\omega_{n}^{2}}$. What is the damping ratio ζ for this mechanical system? What is its undamped natural frequency ω_{n} ?

Answer:

$$
\begin{aligned}
H(s) & =\frac{1}{m s^{2}+b s+k} \\
& =\frac{(1 / k)(k / m)}{s^{2}+\frac{b}{m} s+\frac{k}{m}}
\end{aligned}
$$

The natural frequency is given by $\omega_{n}^{2}=\frac{k}{m} \Rightarrow \omega_{n}=\sqrt{\frac{k}{m}}$. Note: the larger the mass, the lower the undamped natural frequency; the stiffer the spring, the higher the undamped natural frequency. The damping ratio of the system is then:

$$
\zeta=\frac{\frac{b}{m}}{2 \omega_{n}}=\frac{\frac{b}{m}}{2 \sqrt{\frac{k}{m}}}=\frac{b}{2 \sqrt{m k}} .
$$

For a given dashpot, the larger the mass and/or spring constant, the less damped the system will be.
(c) Let the physical constants have numerical values $m=2 \mathrm{~kg}, k=8 \mathrm{~N} / \mathrm{m}$, and $b=4 \mathrm{~N} / \mathrm{m} / \mathrm{s}$. Suppose that the applied force is a step $x(t)=3 u(t) N$. Compute and sketch the resulting mass position for all times. What is the mass position in steady-state? What is the percentage of the first overshoot in the step response? What is the $\pm 5 \%$ settling time of the mass? (a numerical answer will suffice.)

Answer:

With the numerical values given, the damping ratio and undamped natural frequencies are:

$$
\begin{aligned}
& \omega_{n}=\sqrt{\frac{k}{m}}=\sqrt{\frac{8 \frac{\frac{k g m}{s^{2}}}{m}}{2 k g}}=2 \frac{r d}{s} \\
& \zeta=\frac{b}{2 \sqrt{m k}}=\frac{4 \frac{N}{m / s}}{2 \sqrt{16 k g \frac{N}{m}}}=0.5
\end{aligned}
$$

The step input force is $x(t)=3 u(t) \leftrightarrow \frac{3}{s}, \operatorname{Re}\{s\}>0$. The Laplace transform of the step response is given by:

$$
\begin{aligned}
Y(s) & =\frac{1.5}{s\left(s^{2}+2 s+4\right)} \\
& =\frac{-0.18750+j 0.10826}{s+1-j \sqrt{3}}+\frac{-0.18750-j 0.10826}{s+1+j \sqrt{3}}+\frac{0.375}{s}
\end{aligned}
$$

Taking the inverse Laplace transforms of the partial fractions and simplifying, we get

$$
\begin{aligned}
y(t) & =\left[(-0.18750+j 0.10826) e^{(-1+j \sqrt{3}) t}+(-0.18750-j 0.10826) e^{(-1-j \sqrt{3}) t}\right] u(t)+0.375 u(t) \\
& =2 e^{-t} \operatorname{Re}\left[(-0.18750+j 0.10826) e^{j \sqrt{3} t}\right] u(t)+0.375 u(t) \\
& =2 e^{-t}[-0.18750 \cos \sqrt{3} t-0.10826 \sin \sqrt{3} t] u(t)+0.375 u(t) m
\end{aligned}
$$

This step response is plotted in Figure 8.8. The mass position in steady state is 0.375 m .

Figure 8.8: Step response of mass-spring-damper system of Problem 8.2.
The $\pm 5 \%$ settling time of the mass is found to be $t_{s}=2.65$. Percentage of overshoot:

$$
O S=100 e^{-\frac{\varsigma \pi}{\sqrt{1-\varsigma^{2}}}} \%=100 e^{-\frac{0.5 \pi}{\sqrt{0.75}}} \%=16.3 \%
$$

Exercises

Problem 8.3

Compute the 95% rise time t_{r} and the $\pm 5 \%$ settling time t_{s} of the step response of the system
$H(s)=\frac{0.001 s+1}{0.1 s+1}, \operatorname{Re}\{s\}>-10$.

Answer:

Here, we have a first-order lag with $\alpha=0.01$ and time constant $\tau=0.1$, i.e.,

$$
H(s)=\frac{\alpha \tau s+1}{\tau s+1}=\frac{0.01(0.1) s+1}{0.1 s+1}=0.01+\frac{0.99}{0.1 s+1},
$$

the step response is: $\quad s(t)=0.01 u(t)+0.99\left(1-e^{-10 t}\right) u(t)$.

Rise time: $\quad t_{r}=t_{95 \%}-t_{5 \%}=2.9444 \tau=0.29444 \mathrm{~s}$.
$\pm 5 \%$ Settling time: $t_{s}=t_{95 \%}=2.9957 \tau=0.29957 \mathrm{~s}$

Problem 8.4

Compute the DC gain in dBs , the peak resonance in dBs , and the quality Q of the second-order causal filter with transfer function: $H(s)=\frac{1000}{s^{2}+2 s+100}$.

Problem 8.5

Compute the actual value of the first overshoot in the step response of the causal LTI system
$H(s)=\frac{5}{3 s^{2}+3 s+6}$.

Answer:
$H(s)=\frac{5}{3 s^{2}+3 s+6}=\frac{5 / 3}{s^{2}+s+2}$ has a DC gain of $\frac{5}{6}=0.833$, which is also equal to the settling
value of the step response of the system. The damping ratio is found to be $\zeta=\frac{1}{2 \sqrt{2}}$, which gives
a percentage of overshoot of $O S=100 e^{-\frac{\varsigma \pi}{\sqrt{1-\varsigma^{2}}}} \%=100 e^{-\frac{\frac{1}{2 \sqrt{2}} \pi}{\sqrt{\frac{7}{8}}}} \%=100 e^{-\frac{\pi}{\sqrt{7}}} \%=30.5 \%$. Therefore, the value of the first overshoot in the step response is given by: $1.305 * \frac{5}{6}=1.088$.

Problem 8.6

Compute the group delay of a communication channel represented by the causal first-order system $H(s)=\frac{1}{0.01 s+1}, \operatorname{Re}\{s\}>-100$. Compute the approximate value of the channel's delay at very low frequencies.

Problem 8.7

Sketch the pole-zero plots in the s-plane and the Bode plots (magnitude and phase) for the following systems. Specify whether the transfer functions have poles or zeros at infinity.
(a) $H(s)=\frac{100(s-20)}{(s+5)(s+100)^{2}}, \operatorname{Re}\{s\}>-5$.
$H(s)=\frac{100(s-20)}{(s+5)(s+100)^{2}}=-\frac{1}{250} \frac{(-s / 20+1)}{(s / 5+1)(s / 100+1)^{2}}$

Break frequencies at $\omega_{1}=20$ (zero); $\omega_{2}=5, \omega_{3}=100(\times 2)$ (poles), two zeros at ∞.

(b) $H(s)=\frac{-s+10}{s(0.005 s+1)}, \operatorname{Re}\{s\}>0$.

Answer:

$$
H(s)=\frac{-s+10}{s(0.005 s+1)}=\frac{10(-s / 10+1)}{s(0.005 s+1)} .
$$

Break frequencies at $\omega_{1}=10$ (zero); $\omega_{2}=0, \omega_{3}=200$ (poles), one zero at ∞.

(c) $H(s)=\frac{s^{2}}{s^{2}+30 s+900}, \operatorname{Re}\{s\}>-15$

Answer:

$$
H(s)=\frac{s^{2}}{s^{2}+30 s+900}=\frac{1}{900} \frac{s^{2}}{\frac{s^{2}}{30^{2}}+\frac{1}{30} s+1}, \omega_{n}=30, \zeta=0.5
$$

Problem 8.8

Sketch the pole-zero plots in the s-plane and the Bode plots (magnitude and phase) for the following systems. Specify if the transfer functions have poles or zeros at infinity.
(a) $H(s)=\frac{100(s-10)}{(s+1)(s+10)(s+100)}, \operatorname{Re}\{s\}>-1$.
(b) $H(s)=\frac{s+1}{s(0.01 s+1)}, \operatorname{Re}\{s\}>0$.
(c) $H(s)=\frac{s\left(s^{2}-9\right)}{(s+100)\left(s^{2}+10 s+100\right)}, \operatorname{Re}\{s\}>-5$

Problem 8.9

Consider the causal differential system described by:

$$
\frac{1}{4} \frac{d^{2} y(t)}{d t^{2}}+\frac{1}{\sqrt{2}} \frac{d y(t)}{d t}+y(t)=\frac{d x(t)}{d t}+x(t)
$$

with initial conditions $\frac{d y\left(0^{-}\right)}{d t}=3, \quad y\left(0^{-}\right)=0$. Suppose that this system is subjected to the input signal $\quad x(t)=e^{-2 t} u(t)$.
(a) Find the system's damping ratio ζ and undamped natural frequency ω_{n}. Compute the output of the system $y(t)$ for $t \geq 0$. Find the steady-state response $y_{s s}(t)$, the transient response $y_{t r}(t)$, the zero-input response $y_{z i}(t)$ and the zero-state response $y_{z s}(t)$ for $t \geq 0$.

Answer:

Let's take the unilateral Laplace transform on both sides of the differential equation.

$$
\frac{1}{4}\left[s^{2} \boldsymbol{y}(s)-s y\left(0^{-}\right)-\frac{d y\left(0^{-}\right)}{d t}\right]+\frac{1}{\sqrt{2}}\left[s \boldsymbol{y}(s)-y\left(0^{-}\right)\right]+\boldsymbol{Y}(s)=s \boldsymbol{X}(s)+\boldsymbol{X}(s)
$$

Collecting the terms containing $\boldsymbol{\mathscr { }}(s)$ on the left-hand side and putting everything else on the right-hand side, we can solve for $\mathscr{\mathcal { Y }}(s)$.

$$
\begin{aligned}
& \left(s^{2}+2 \sqrt{2} s+4\right) \boldsymbol{Y}(s)=4 s \mathcal{X}(s)+4 \mathcal{X}(s)+s y\left(0^{-}\right)+2 \sqrt{2} y\left(0^{-}\right)+\frac{d y\left(0^{-}\right)}{d t} \\
& \boldsymbol{Y}(s)=\underbrace{\frac{(4 s+4) \mathcal{X}(s)}{s^{2}+2 \sqrt{2}}+4}_{\text {zero-state resp. }}+\underbrace{\frac{(s+2 \sqrt{2}) y\left(0^{-}\right)+\frac{d y\left(0^{-}\right)}{d t}}{s^{2}+2 \sqrt{2} s+4}}_{\text {zero-input resp. }}
\end{aligned}
$$

Since the system is causal, the ROC is an open RHP to the right of the rightmost pole. The undamped natural frequency is $\omega_{n}=2$ and the damping ratio is $\zeta=\frac{1}{\sqrt{2}}$. The poles are $p_{1,2}=-\zeta \omega_{n} \pm j \omega_{n} \sqrt{1-\zeta^{2}}=-\sqrt{2} \pm j \sqrt{2}$. Therefore the ROC is $\operatorname{Re}\{s\}>-\sqrt{2}$. The unilateral LT of the input is given by

$$
X(s)=\frac{1}{s+2}, \quad \operatorname{Re}\{s\}>-2
$$

thus,

$$
\boldsymbol{Y}(s)=\underbrace{\frac{4(s+1)}{(s+2)\left(s^{2}+2 \sqrt{2} s+4\right)}}_{\begin{array}{c}
\text { Ref } f s+>-\sqrt{2} \\
\text { zeros-stat ersp. }
\end{array}}+\underbrace{\frac{3}{s^{2}+2 \sqrt{2} s+4}}_{\begin{array}{c}
\text { Re } f s\rangle>-\sqrt{2} \\
\text { zero-input resp. }
\end{array}} .
$$

Let's compute the zero-state response first:

$$
\begin{aligned}
\boldsymbol{y}_{2 s}(s) & =\frac{4(s+1)}{(s+2)\left(s^{2}+2 \sqrt{2} s+4\right)}, \quad \operatorname{Re}\{s\}>-\sqrt{2} \\
& =\underbrace{\frac{A \sqrt{2}+B(s+\sqrt{2})}{(s+\sqrt{2})^{2}+2}}_{\operatorname{Re}\{s\}>-\sqrt{2}}+\frac{C}{\underbrace{s+2}_{\operatorname{Re}\{s\}>-2}} \\
& =\frac{\underbrace{(s+\sqrt{2}+B(s+\sqrt{2})}_{\operatorname{Re}\{s\}\rangle-\sqrt{2}}}{(s+2)^{2}+2}-\underbrace{\frac{1.707}{s+2}}_{\operatorname{Re}\{\{ \}\}>-2}
\end{aligned}
$$

Let $s=-\sqrt{2}$ to compute $A=-3 \frac{1-\sqrt{2}}{2-\sqrt{2}}=2.1213$, then multiply both sides by s and let $s \rightarrow \infty$ to get $B=-C=1+1 / \sqrt{2}=1.707$:

$$
\boldsymbol{U}_{\Delta s}(s)=\underbrace{\frac{2.121 \sqrt{2}+1.707(s+\sqrt{2})}{(s+\sqrt{2})^{2}+2}}_{\operatorname{Re}\{\{ \}\}>-\sqrt{2}}-\underbrace{\frac{1.707}{s+2}}_{\operatorname{Re}\{s\}\rangle-2}
$$

Notice that the second term is not a steady-state response, and thus $y_{s s}(t)=0$. Taking the inverse Laplace transform using the table yields

$$
y_{z s}(t)=\left[-1.707 e^{-2 t}+2.121 e^{-\sqrt{2} t} \sin (\sqrt{2} t)+1.707 e^{-\sqrt{2} t} \cos (\sqrt{2} t)\right] u(t)
$$

The zero-input response is given by:

$$
\begin{aligned}
\boldsymbol{Y}_{z i}(s) & =\frac{3}{\underbrace{s^{2}+2 \sqrt{2} s+4}_{\substack{\text { Re }\{s\}\rangle-\sqrt{2} \\
\text { zero-inut resp. }}}} \\
& =\frac{\frac{3}{\sqrt{2}} \sqrt{2}}{(s+\sqrt{2})^{2}+2}, \quad \operatorname{Re}\{s\}>-\sqrt{2}
\end{aligned}
$$

which yields:

$$
y_{z i}(t)=\frac{3}{\sqrt{2}} e^{-\sqrt{2} t} \sin (\sqrt{2} t) u(t) .
$$

The transient response is the sum of $y_{z i}(t)$ and $y_{z s}(t)$ above.
$y_{t r}(t)=\left[-1.707 e^{-2 t}+2.121 e^{-\sqrt{2} t} \sin (\sqrt{2} t)+1.707 e^{-\sqrt{2} t} \cos (\sqrt{2} t)+\frac{3}{\sqrt{2}} e^{-\sqrt{2} t} \sin (\sqrt{2} t)\right] u(t)$
(b) Plot $y_{s s}(t), y_{t r}(t), y_{z i}(t), y_{z s}(t)$ for $t \geq 0$, all on the same figure.

Answer:

(c) Find the frequency response of the system and sketch its Bode plot.

Answer:

The transfer function of the system is $H(s)=\frac{4 s+4}{s^{2}+2 \sqrt{2} s+4}$, and the frequency response is given by:

$$
H(j \omega)=\frac{4 j \omega+4}{(j \omega)^{2}+2 \sqrt{2} j \omega+4}=\frac{(j \omega+1)}{\frac{(j \omega)^{2}}{4}+\frac{\sqrt{2}}{2} j \omega+1}
$$

Problem 8.10

Consider the causal differential system described by its direct form realization shown in Figure
8.9 .

Figure 8.9: System of Problem 8.10.

This system has initial conditions $\frac{d y\left(0^{-}\right)}{d t}=-1, \quad y\left(0^{-}\right)=2$. Suppose that the system is subjected to the unit step input signal $x(t)=u(t)$.
(a) Write the differential equation of the system. Find the system's damping ratio ζ and undamped natural frequency ω_{n}. Give the transfer function of the system and specify its ROC. Sketch its pole-zero plot. Is the system stable? Justify.
(b) Compute the step response of the system (including the effect of initial conditions), its steady-state response $y_{s s}(t)$ and its transient response $y_{t r}(t)$ for $t \geq 0$. Identify the zero-state response and the zero-input response in the Laplace domain.
(c) Compute the percentage of first overshoot in the step response of the system assumed this time to be initially at rest.

