Solutions to Problems in Chapter 7

Problems with Solutions

Problem 7.1

Consider the system described by:

$$
H(s)=\frac{3 s^{2}-3 s-6}{s^{3}+12 s^{2}+120 s+200}, \operatorname{Re}\{s\}>-2
$$

(a) Find the direct form realization of the transfer function $H(s)$. Is this system BIBO stable? is it causal? Why?

Answer:

The direct form realization is obtained by splitting up the system into two systems as in Figure 7.1.

Figure 7.1: Transfer function split up as a cascade of two subsystems, Problem 7.1(a).
The input-output system equation of the first subsystem is:

$$
s^{3} W(s)=-12 s^{2} W(s)-120 s W(s)-200 W(s)+X(s)
$$

and we begin the diagram by drawing a cascade of three integrators with their inputs labeled as $s^{3} W(s), s^{2} W(s), s W(s)$. Then, we can draw the feedbacks to a summing junction whose output
is the input of the first integrator, labeled $s^{3} W(s)$. The input signal is also an input to that summing junction. For the second subsystem we have

$$
Y(s)=3 s^{2} W(s)-3 s W(s)-6 W(s),
$$

which can be drawn as taps on the integrator inputs, summed up to form the output signal. The resulting direct form realization is shown in Figure 7.2:

Figure 7.2: Direct form realization of transfer function, Problem 7.1(a).
The system is BIBO stable as its rational transfer function is proper and its ROC contains the $j \omega$-axis. It is also causal because its ROC is an open right-half plane and its transfer function is rational.
(b) Give a parallel form realization of $H(s)$ with (possibly complex-rational) first-order blocks.

Answer:

Below is the partial fraction expansion for the parallel realization of the transfer function, shown in :

$$
\begin{aligned}
H(s) & =\frac{3 s^{2}-3 s-6}{s^{3}+12 s^{2}+120 s+200}, \operatorname{Re}\{s\}>-2 \\
& =\frac{3 s^{2}-3 s-6}{(s+2)\left(s^{2}+10 s+100\right)}, \operatorname{Re}\{s\}>-2 \\
& =\underbrace{\frac{0.14286}{s+2}}_{\operatorname{Re}\{s\}\rangle>-2}+\underbrace{\frac{1.4286+j 1.4104}{s+5-j 5 \sqrt{3}}}_{\operatorname{Re}\{s\}\rangle-5}+\underbrace{\frac{1.4286-j 1.4104}{s+5+j 5 \sqrt{3}}}_{\operatorname{Re}\{s\}\rangle-5}
\end{aligned}
$$

Figure 7.3: Parallel form realization of transfer function, Problem 7.1(b).
(c) Give a parallel form realization of $H(s)$ using a real-rational first-order block and a realrational second-order block.

Answer:

The transfer function can be expanded as follows:

$$
H(s)=\underbrace{\frac{0.14286}{s+2}}_{\operatorname{Re}\{s\}\rangle-2}+\underbrace{\frac{2.857 s-10.14287}{s^{2}+10 s+100}}_{\operatorname{Re}\{s\}\rangle-5},
$$

which corresponds to the desired parallel realization in Figure 7.4.

Figure 7.4: Real-rational parallel form realization of transfer function, Problem 7.1(c).

Problem 7.2

Consider the causal differential system described by

$$
\frac{d^{2} y(t)}{d t^{2}}+3 \frac{d y(t)}{d t}+25 y(t)=\frac{d^{2} x(t)}{d t^{2}}-\frac{d x(t)}{d t}+x(t)
$$

with initial conditions $\frac{d y\left(0^{-}\right)}{d t}=3, \quad y\left(0^{-}\right)=-1$. Suppose that this system is subjected to a unit step input signal $x(t)=u(t)$.

Find the system's damping ratio ζ and undamped natural frequency ω_{n}. Give the transfer function of the system and specify its ROC. Compute the steady-state response $y_{s s}(t)$ and the transient response $y_{t r}(t)$ for $t \geq 0$. Compute the zero-input response $y_{z i}(t)$ and the zero-state response $y_{z s}(t)$.

Answer:

Let us take the unilateral Laplace transform on both sides of the differential equation.
$\left[s^{2} \boldsymbol{Y}(s)-s y\left(0^{-}\right)-\frac{d y\left(0^{-}\right)}{d t}\right]+3\left[s \boldsymbol{Y}(s)-y\left(0^{-}\right)\right]+25 \boldsymbol{Y}(s)=s^{2} \boldsymbol{X}(s)-s \boldsymbol{X}(s)+\mathcal{X}(s)$

Collecting the terms containing $\mathscr{Y}(s)$ on the left-hand side and putting everything else on the right-hand side, we can solve for $\mathscr{\mathscr { y }}(s)$.

$$
\begin{aligned}
& \left(s^{2}+3 s+25\right) \boldsymbol{Y}(s)=s^{2} \mathcal{X}(s)-s \mathcal{X}(s)+\mathcal{X}(s)+s y\left(0^{-}\right)+3 y\left(0^{-}\right)+\frac{d y\left(0^{-}\right)}{d t} \\
& \boldsymbol{Y}(s)=\underbrace{\frac{\left(s^{2}-s+1\right) \mathcal{X}(s)}{s^{2}+3 s+25}}_{\text {zero-state resp. }}+\underbrace{\frac{(s+3) y\left(0^{-}\right)+\frac{d y\left(0^{-}\right)}{d t}}{s^{2}+3 s+25}}_{\text {zero-input resp. }}
\end{aligned}
$$

The transfer function is $H(s)=\frac{s^{2}-s+1}{s^{2}+3 s+25}$, and since the system is causal, the ROC is an open RHP to the right of the rightmost pole. The poles are $p_{1,2}=-1.5 \pm j 4.77$. Therefore, the ROC is $\operatorname{Re}\{s\}>-1.5$. The unilateral LT of the input is given by:

$$
X(s)=\frac{1}{s}, \quad \operatorname{Re}\{s\}>0,
$$

thus,

$$
\begin{aligned}
\mathscr{Y}(s) & =\underbrace{\frac{s^{2}-s+1}{s\left(s^{2}+3 s+25\right)}}_{\text {zero-state resp. }}+\frac{-s}{\underbrace{s^{2}+3 s+25}_{\text {zero-input resp. }}} \\
& =\frac{-s+1}{s\left(s^{2}+3 s+25\right)}
\end{aligned}
$$

Let us compute the zero-state response first:

$$
\begin{aligned}
\mathcal{U}_{z s}(s) & =\frac{s^{2}-s+1}{s\left(s^{2}+3 s+25\right)}, \quad \operatorname{Re}\{s\}>0 \\
& =\underbrace{\frac{A(4.77)+B(s+1.5)}{(s+1.5)^{2}+22.75}}_{\operatorname{Re}\{\{ \}\rangle>-1.5}+\underbrace{\frac{C}{s}}_{\operatorname{Re}\{s\}\rangle>0} \\
& =\underbrace{\frac{A(4.77)+B(s+1.5)}{(s+1.5)^{2}+22.75}}_{\operatorname{Re}\{s\}>-1.5}+\underbrace{\frac{0.04}{s}}_{\operatorname{Re}\{s\}\}>0}
\end{aligned}
$$

Let $s=-1.5$ to compute $\frac{(-1.5)^{2}+1.5+1}{(-1.5)(22.75)}=\frac{4.77}{22.75} A-0.0267 \Rightarrow A=-0.5365$, then multiply both sides by s and let $s \rightarrow \infty$ to get $1=B+0.04 \Rightarrow B=0.96$:

$$
\mathcal{Y}(s)=\underbrace{\frac{-0.5365(4.77)+0.96(s+1.5)}{(s+1.5)^{2}+22.75}}_{\operatorname{Re}\{\{ \}\}>-1.5}+\underbrace{\frac{0.04}{s}}_{\operatorname{Re}\{\{ \} \gg 0}
$$

Notice that the second term $\frac{0.04}{s}$ is the steady-state response, and thus $y_{s s}(t)=0.04 u(t)$.

Taking the inverse Laplace transform using the table, we obtain:

$$
y_{z s}(t)=\left[-0.5365 e^{-1.5 t} \sin (4.77 t)+0.96 e^{-1.5 t} \cos (4.77 t)\right] u(t)+0.04 u(t) .
$$

Let us compute the zero-input response:

$$
\begin{aligned}
\boldsymbol{Y}_{z i}(s) & =\frac{-s}{s^{2}+3 s+25}, \quad \operatorname{Re}\{s\}>-1.5 \\
& =\frac{\frac{1.5}{4.77}(4.77)-(s+1.5)}{(s+1.5)^{2}+22.75}, \quad \operatorname{Re}\{s\}>-1.5
\end{aligned}
$$

The inverse Laplace transform using the table yields

$$
y_{z i}(t)=\left[0.3145 e^{-1.5 t} \sin (4.77 t)-e^{-1.5 t} \cos (4.77 t)\right] u(t) .
$$

Finally, the transient response is the sum of the zero-input and zero-state responses minus the steady-state response.

$$
\begin{aligned}
y_{t r}(t) & =\left[(0.3145-0.5365) e^{-1.5 t} \sin (4.77 t)+(0.96-1) e^{-1.5 t} \cos (4.77 t)\right] u(t) \\
& =\left[-0.222 e^{-1.5 t} \sin (4.77 t)-0.04 e^{-1.5 t} \cos (4.77 t)\right] u(t)
\end{aligned}
$$

Exercises

Problem 7.3

Consider the causal differential system described by: $\frac{1}{4} \frac{d^{2} y(t)}{d t^{2}}+\frac{1}{\sqrt{2}} \frac{d y(t)}{d t}+y(t)=\frac{d x(t)}{d t}+x(t)$,
with initial conditions $\frac{d y\left(0^{-}\right)}{d t}=3, \quad y\left(0^{-}\right)=0$. Suppose that this system is subjected to the input signal: $x(t)=e^{-2 t} u(t)$. Find the system's damping ratio ζ and undamped natural frequency ω_{n}. Compute the output of the system $y(t)$ for $t \geq 0$. Find the steady-state response $y_{s s}(t)$, the
transient response $y_{t r}(t)$, the zero-input response $y_{z i}(t)$ and the zero-state response $y_{z s}(t)$ for $t \geq 0$.

Answer:

Let us take the unilateral Laplace transform on both sides of the differential equation:

$$
\frac{1}{4}\left[s^{2} \boldsymbol{Y}(s)-s y\left(0^{-}\right)-\frac{d y\left(0^{-}\right)}{d t}\right]+\frac{1}{\sqrt{2}}\left[s \boldsymbol{\mathcal { }}(s)-y\left(0^{-}\right)\right]+\boldsymbol{Y}(s)=s \boldsymbol{X}(s)+\boldsymbol{X}(s) .
$$

Collecting the terms containing $\boldsymbol{\mathscr { }}(s)$ on the left-hand side and putting everything else on the right-hand side, we can solve for $\mathscr{\mathscr { L }}(s)$:

$$
\begin{aligned}
& \left(s^{2}+2 \sqrt{2} s+4\right) \boldsymbol{Y}(s)=4 s \boldsymbol{X}(s)+4 \mathcal{X}(s)+s y\left(0^{-}\right)+2 \sqrt{2} y\left(0^{-}\right)+\frac{d y\left(0^{-}\right)}{d t} \\
& \boldsymbol{y}(s)=\underbrace{\frac{(4 s+4) \mathcal{X}(s)}{s^{2}+2 \sqrt{2}}+4}_{\text {zero-state resp. }}+\underbrace{\frac{(s+2 \sqrt{2}) y\left(0^{-}\right)+\frac{d y\left(0^{-}\right)}{d t}}{s^{2}+2 \sqrt{2} s+4}}_{\text {zero-input resp. }}
\end{aligned}
$$

Since the system is causal, the ROC is an open RHP to the right of the rightmost pole. The undamped natural frequency is $\omega_{n}=2$ and the damping ratio is $\zeta=\frac{1}{\sqrt{2}}$. The poles are $p_{1,2}=-\zeta \omega_{n} \pm j \omega_{n} \sqrt{1-\zeta^{2}}=-\sqrt{2} \pm j \sqrt{2}$. Therefore the ROC is $\operatorname{Re}\{s\}>-\sqrt{2}$. The unilateral LT of the input is given by $\mathcal{X}(s)=\frac{1}{s+2}, \quad \operatorname{Re}\{s\}>-2$, thus

$$
\boldsymbol{Y}(s)=\underbrace{\frac{4(s+1)}{(s+2)\left(s^{2}+2 \sqrt{2} s+4\right)}}_{\begin{array}{c}
\text { Ref } s s \gg-\sqrt{2} \\
\text { zeros } \\
\text { state esp. }
\end{array}}+\underbrace{\frac{3}{s^{2}+2 \sqrt{2} s+4}}_{\begin{array}{c}
\text { Re }\{s\}>-\sqrt{2} \\
\text { zero-input resp. }
\end{array}}
$$

Let us compute the zero-state response first:

$$
\begin{aligned}
\boldsymbol{y}_{z s}(s) & =\frac{4(s+1)}{(s+2)\left(s^{2}+2 \sqrt{2} s+4\right)}, \quad \operatorname{Re}\{s\}>-\sqrt{2} \\
& =\underbrace{\frac{A \sqrt{2}+B(s+\sqrt{2})}{(s+\sqrt{2})^{2}+2}}_{\operatorname{Re}\{s\}>-\sqrt{2}}+\frac{C}{\underbrace{s+2}_{\operatorname{Re}\{s\}\rangle>-2}} \\
& =\underbrace{\frac{A \sqrt{2}+B(s+\sqrt{2})}{(s+\sqrt{2})^{2}+2}}_{\operatorname{Re}\{\{s\}>-\sqrt{2}}-\frac{\underbrace{s+2}_{\operatorname{Re}\{\{ \}\}>2}}{1.707}
\end{aligned}
$$

Let $s=-\sqrt{2}$ to compute $A=-3 \frac{1-\sqrt{2}}{2-\sqrt{2}}=2.1213$, then multiply both sides by s and let $s \rightarrow \infty$ to get $B=-C=1+1 / \sqrt{2}=1.707$:

$$
\boldsymbol{Y}_{z s}(s)=\underbrace{\frac{2.121 \sqrt{2}+1.707(s+\sqrt{2})}{(s+\sqrt{2})^{2}+2}}_{\operatorname{Re}\{s\}\}>-\sqrt{2}}-\underbrace{\frac{1.707}{s+2}}_{\operatorname{Re}\{s\}\rangle-2}
$$

Notice that the second term is not a steady-state response, and thus $y_{s s}(t)=0$. Taking the inverse Laplace transform using Table D. 4 yields:

$$
y_{z s}(t)=\left[-1.707 e^{-2 t}+2.121 e^{-\sqrt{2} t} \sin (\sqrt{2} t)+1.707 e^{-\sqrt{2} t} \cos (\sqrt{2} t)\right] u(t) .
$$

The zero-input response is given by:

$$
\mathcal{U}_{z i}(s)=\underbrace{\frac{3}{s^{2}+2 \sqrt{2} s+4}}_{\substack{\text { Ref }\{s \gg-\sqrt{2} \\ \text { zero-input resp. }}}=\frac{\frac{3}{\sqrt{2}} \sqrt{2}}{(s+\sqrt{2})^{2}+2}, \quad \operatorname{Re}\{s\}>-\sqrt{2}
$$

which yields: $y_{z i}(t)=\frac{3}{\sqrt{2}} e^{-\sqrt{2} t} \sin (\sqrt{2} t) u(t)$.

The transient response is the sum of $y_{z i}(t)$ and $y_{z s}(t)$ above.
$y_{t r}(t)=\left[-1.707 e^{-2 t}+2.121 e^{-\sqrt{2} t} \sin (\sqrt{2} t)+1.707 e^{-\sqrt{2} t} \cos (\sqrt{2} t)+\frac{3}{\sqrt{2}} e^{-\sqrt{2} t} \sin (\sqrt{2} t)\right] u(t)$

Problem 7.4

Use the unilateral Laplace transform to compute the output response $y(t)$ to the input $x(t)=\cos (10 t) u(t)$ of the following causal LTI differential system with initial conditions $y\left(0^{-}\right)=1, \frac{d y\left(0^{-}\right)}{d t}=1:$

$$
\frac{d^{2} y(t)}{d t^{2}}+5 \frac{d y(t)}{d t}+6 y(t)=x(t)
$$

Problem 7.5

Compute the steady-state response of the causal LTI differential system $5 \frac{d y(t)}{d t}+y(t)=10 x(t)$ to the input $x(t)=\sin (20 t)$.

Answer:

The frequency response of the system is identified as $H(j \omega)=\frac{10}{5 j \omega+1}$. Its steady-state response is simply:

$$
\begin{aligned}
y_{s s}(t) & =|H(j 20)| \sin (20 t+\angle H(j 20)) \\
& =\left|\frac{10}{j 100+1}\right| \sin \left(20 t+\angle \frac{10}{j 100+1}\right) \\
& =\frac{10}{\sqrt{10001}} \sin \left(20 t+\arctan \left(\frac{-100}{1}\right)\right) . \\
& =0.100 \sin (20 t-1.5608)
\end{aligned}
$$

Problem 7.6

(a) Find the direct form realization of the transfer function $H(s)=\frac{s^{2}-3 s+12}{3 s^{2}+9 s+6}, \operatorname{Re}\{s\}>-1$. Is this system BIBO stable? is it causal? Why? Let $y(t)$ be the step response of the system. Compute $y\left(0^{+}\right)$and $y(+\infty)$.
(b) Give a parallel form realization of $H(s)$ given in (a) with first-order blocks.

Problem 7.7

(a) Find the direct form realization of the transfer function below. Is this system BIBO stable? is it causal? Why?

$$
H(s)=\frac{s^{2}+4 s-6}{s^{3}+2 s^{2}-5 s-6},-1<\operatorname{Re}\{s\}<2
$$

Answer:

The direct form realization is obtained by splitting this system into two subsystems as follows:

The input-output system equation of the first subsystem is

$$
s^{3} W(s)=-2 s^{2} W(s)+5 s W(s)+6 W(s)+X(s),
$$

and we begin the diagram by drawing a cascade of three integrators with their inputs labeled as $s^{3} W(s), s^{2} W(s), s W(s)$. Then we can draw the feedbacks to a summing junction whose output is the input of the first integrator, labeled $s^{3} W(s)$. The input signal is also an input to that summing junction.

For the second subsystem we have:

$$
Y(s)=s^{2} W(s)+4 s W(s)-6 W(s),
$$

which can be drawn as taps on the integrator inputs, summed up to form the output signal. The direct form realization is then:

The system is BIBO stable as its rational transfer function is proper and its ROC contains the $j \omega$-axis. It is also causal because its ROC is an open right-half plane and the transfer function is rational.
(b) Give a parallel form realization of $H(s)$ with first-order blocks.

Answer:

Parallel realization:

$$
\begin{aligned}
H(s) & =\frac{s^{2}+4 s-6}{s^{3}+2 s^{2}-5 s-6},-1<\operatorname{Re}\{s\}<2 \\
& =\frac{s^{2}+4 s-6}{(s+1)(s-2)(s+3)},-1<\operatorname{Re}\{s\}<2 \\
& =\underbrace{\frac{1.5}{s+1}}_{\operatorname{Re}\{\{ \}\}>-1}+\underbrace{\frac{0.4}{s-2}}_{\operatorname{Re}\{s\}\}<2}-\underbrace{\frac{0.9}{s+3}}_{\operatorname{Re}\{s\},>-3}
\end{aligned}
$$

(c) Give a cascade form realization of $H(s)$ with first-order blocks.

Answer:

Cascade realization (this is one possibility, other possibilities when grouping poles and zeros in a different way):

$$
\begin{aligned}
& H(s)=\frac{s^{2}+4 s-6}{s^{3}+2 s^{2}-5 s-6},-1<\operatorname{Re}\{s\}<2 \\
& =\frac{(s-1.1623)(s+5.1623)}{(s+1)(s-2)(s+3)},-1<\operatorname{Re}\{s\}<2 \\
& =\left(\frac{1}{s+1}\right)\left(\frac{s-1.1623}{s-2}\right)\left(\frac{s+5.1623}{s+3}\right),-1<\operatorname{Re}\{s\}<2
\end{aligned}
$$

Problem 7.8
Consider the causal differential system described by:

$$
\frac{1}{2} \frac{d^{2} y(t)}{d t^{2}}+\frac{d y(t)}{d t}+2 y(t)=-\frac{d x(t)}{d t}-x(t),
$$

with initial conditions $\frac{d y\left(0^{-}\right)}{d t}=1, \quad y\left(0^{-}\right)=2$. Suppose that this system is subjected to the input signal $x(t)=u(t)$. Give the transfer function of the system and specify its ROC. Compute the steady-state response $y_{s s}(t)$ and the transient response $y_{t r}(t)$ for $t \geq 0$.

