Solutions to Problems in Chapter 10

Problems with Solutions

Problem 10.1

Consider the causal LTI state-space system:

$$\dot{x} = Ax + Bu$$
$$y = Cx$$

where
$$A = \begin{bmatrix} -1 & 1 \\ -1 & -1 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $C = \begin{bmatrix} 1 & 1 \end{bmatrix}$.

(a) Is the system stable? Justify your answer.

Answer:

We compute the eigenvalues of the A matrix:

$$\det\begin{bmatrix} \lambda + 1 & -1 \\ 1 & \lambda + 1 \end{bmatrix} = (\lambda + 1)(\lambda + 1) + 1 = \lambda^2 + 2\lambda + 2$$

$$\Rightarrow \lambda_1 = -1 + j, \lambda_2 = -1 - j$$

The eigenvalues of the A matrix $\lambda_{1,2} = -1 \pm j$ have a negative real part, therefore the system is stable.

(b) Compute the transfer function H(s) of the system. Specify its ROC.

$$\begin{split} H(s) &= C(sI_2 - A)^{-1}B \\ &= \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} s+1 & -1 \\ 1 & s+1 \end{bmatrix}^{-1} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \\ &= \frac{1}{s^2 + 2s + 2} \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} s+1 & 1 \\ -1 & s+1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \\ &= \frac{1}{s^2 + 2s + 2} \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} s+1 \\ -1 \end{bmatrix} = \frac{s}{s^2 + 2s + 2}, \quad \operatorname{Re}\{s\} > -1 \end{split}$$

The poles of the transfer function are $-\zeta \omega_n \pm j\omega_n \sqrt{1-\zeta^2} = -\frac{1}{\sqrt{2}}\sqrt{2} \pm j\sqrt{2}\sqrt{\frac{1}{2}} = -1 \pm j1$, equal to the eigenvalues as expected.

(c) Compute the impulse response h(t) of the system using the matrix exponential.

Answer:

The eigenvectors of the A matrix are computed as follows:

$$(\lambda_{1}I - A)v_{1} = \begin{bmatrix} -1 + j + 1 & -1 \\ 1 & -1 + j + 1 \end{bmatrix} \begin{bmatrix} v_{11} \\ v_{12} \end{bmatrix} = \begin{bmatrix} j & -1 \\ 1 & j \end{bmatrix} \begin{bmatrix} v_{11} \\ v_{12} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\Rightarrow v_{11} = 1, v_{12} = j$$

$$v_{2} = v_{1}^{*} = \begin{bmatrix} 1 \\ -j \end{bmatrix}$$

Thus
$$T = \begin{bmatrix} 1 & 1 \\ j & -j \end{bmatrix}$$
, $T^{-1} = \frac{1}{-2j} \begin{bmatrix} -j & -1 \\ -j & 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & -j\frac{1}{2} \\ \frac{1}{2} & j\frac{1}{2} \end{bmatrix}$, and

$$h(t) = CT \operatorname{diag} \{ e^{(-1+j)t}, e^{(-1-j)t} \} T^{-1} q(t)$$

$$= \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ j & -j \end{bmatrix} \begin{bmatrix} e^{(-1+j)t} & 0 \\ 0 & e^{(-1-j)t} \end{bmatrix} \begin{bmatrix} \frac{1}{2} & -j\frac{1}{2} \\ \frac{1}{2} & j\frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} q(t)$$

$$= \begin{bmatrix} 1+j & 1-j \end{bmatrix} \begin{bmatrix} e^{(-1+j)t} & 0 \\ 0 & e^{(-1-j)t} \end{bmatrix} \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} q(t)$$

$$= \begin{bmatrix} \left(\frac{1}{2}+j\frac{1}{2}\right)e^{(-1+j)t} + \left(\frac{1}{2}-j\frac{1}{2}\right)e^{(-1-j)t} \end{bmatrix} q(t)$$

$$= e^{-t} \begin{bmatrix} \left(\frac{1}{2}+j\frac{1}{2}\right)e^{jt} + \left(\frac{1}{2}-j\frac{1}{2}\right)e^{-jt} \end{bmatrix} q(t)$$

$$= 2e^{-t} \operatorname{Re} \left[\left(\frac{1}{2}+j\frac{1}{2}\right)e^{jt} \right] q(t) = e^{-t} \left(\cos t - \sin t\right) q(t)$$

Thus, $h(t) = e^{-t} \left(\cos t - \sin t\right) q(t).$

Problem 10.2

Find controllable and observable canonical state-space realizations for the following LTI system:

$$H(s) = \frac{s^3 + s + 2}{s^3 + 3s}, \quad \text{Re}\{s\} > 0.$$

Answer:

The system's controllable canonical state-space realization is shown in Figure 10.1

Figure 10.1: Controllable canonical realization of system of Problem 10.2.

Referring to Figure 10.1, we can write down the state-space equations of the controllable canonical realization of the system:

$$\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \\ \dot{x}_3(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -3 & 0 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \\ x_3(t) \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u(t),$$

$$y(t) = \begin{bmatrix} 2 & -2 & 0 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \\ x_3(t) \end{bmatrix} + u(t).$$

The observable canonical realization is the block diagram of Figure 10.2

Figure 10.2: Observable canonical realization of system of Problem 10.2.

From Figure 10.2, the state-space equations of the observable canonical realization of the system can be written as:

$$\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \\ \dot{x}_3(t) \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & -3 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \\ x_3(t) \end{bmatrix} + \begin{bmatrix} 2 \\ -2 \\ 0 \end{bmatrix} u(t),$$

$$y(t) = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \\ x_3(t) \end{bmatrix} + u(t)$$

Exercises

Problem 10.3

Compute
$$e^A + I$$
 for $A = \begin{bmatrix} -2 & 0 \\ 3 & 1 \end{bmatrix}$.

Answer:

The eigenvalues of the A matrix are computed:

$$\det(\lambda I - A) = 0$$

$$\det\begin{bmatrix} \lambda + 2 & 0 \\ -3 & \lambda - 1 \end{bmatrix} = (\lambda + 2)(\lambda - 1) = 0$$

$$\Rightarrow \lambda_1 = -2, \lambda_2 = 1$$

Next, we compute the eigenvectors of A:

Eigenvector v_1 corresponding to $\lambda_1 = -2$:

$$\begin{bmatrix} (-2) + 2 & 0 \\ -3 & (-2) - 1 \end{bmatrix} \begin{bmatrix} v_{11} \\ v_{12} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ -3 & -3 \end{bmatrix} \begin{bmatrix} v_{11} \\ v_{12} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\Rightarrow v_{11} = 1, v_{12} = -1$$

Eigenvector v_2 corresponding to $\lambda_1 = -3$:

$$\begin{bmatrix} (1)+2 & 0 \\ -3 & (1)-1 \end{bmatrix} \begin{bmatrix} v_{11} \\ v_{12} \end{bmatrix} = \begin{bmatrix} 3 & 0 \\ -3 & 0 \end{bmatrix} \begin{bmatrix} v_{21} \\ v_{22} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$
$$\Rightarrow v_{21} = 0, v_{22} = 1$$

Diagonalizing matrix $T = \begin{bmatrix} v_1 & v_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}$

$$e^{A} = T \operatorname{diag}\{e^{-2}, e^{1}\}T^{-1}$$

$$= \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} e^{-2} & 0 \\ 0 & e^{1} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} e^{-2} & 0 \\ e^{1} & e^{1} \end{bmatrix}$$

$$= \begin{bmatrix} e^{-2} & 0 \\ e^{1} - e^{-2} & e^{1} \end{bmatrix}$$

Finally,
$$e^A + I = \begin{bmatrix} 1 + e^{-2} & 0 \\ e^1 - e^{-2} & 1 + e^1 \end{bmatrix}$$
.

Consider the causal LTI state-space system

$$\dot{x} = Ax + Bu$$

 $y = Cx$ where $A = \begin{bmatrix} -1 & 1 \\ -1 & -1 \end{bmatrix}$, $B = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $C = \begin{bmatrix} 1 & 1 \end{bmatrix}$.

- (a) Is the system stable? Justify.
- (b) Compute the transfer function $\mathcal{H}(s)$ of the system. Specify its ROC.
- (c) Compute the impulse response h(t) of the system using the matrix exponential.

Problem 10.5

Repeat Problem 2 with $A = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$, $B = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $C = \begin{bmatrix} 0 & 1 \end{bmatrix}$. What type of system is this?

(a) Is the system stable? Justify.

Answer:

The eigenvalues of the A matrix $\lambda_{1,2} = 0$ sit on the imaginary axis, therefore the system is unstable.

(b) Compute the transfer function $\mathcal{H}(s)$ of the system. Specify its ROC.

Answer:

$$\mathcal{H}(s) = C(sI_2 - A)^{-1}B$$

$$= \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} s & 0 \\ -1 & s \end{bmatrix}^{-1} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$= \frac{1}{s^2} \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} s & 0 \\ 1 & s \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$= \frac{1}{s^2}, \quad \text{Re}\{s\} > 0$$

This is a double integrator. There is a double pole at 0, same as the eigenvalues so the system is minimal.

(c) Compute the impulse response h(t) of the system using the matrix exponential.

Answer:

Use the power series for the matrix exponential:

$$e^{At} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + t \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} + \underbrace{\frac{1}{2} \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}^{2}_{0} + \cdots}_{0}$$
$$= \begin{bmatrix} 1 & 0 \\ t & 1 \end{bmatrix}$$

$$h(t) = Ce^{At}Bq(t)$$

$$= \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ t & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} q(t)$$

$$= tq(t)$$

Find controllable and observable canonical state-space realizations for each of the following LTI systems.

(a)
$$h(t) = e^{-2t}q(t) + te^{2t}q(t)$$

(b)
$$\frac{s^3 + s^2 + 2s + 1}{s^3 + 5s^2 + 2s}$$
, Re $\{s\} > 0$

Problem 10.7

Find controllable and observable canonical state-space realizations for each of the following LTI systems.

(a)
$$h(t) = e^{-3t}q(t) + e^{-t}q(t) + \delta(t)$$

Answer:

This system is causal. Its transfer function is given by:

$$H(s) = \mathcal{L}\left\{e^{-3t}q(t) + e^{-t}q(t) + \delta(t)\right\}$$

$$= \frac{1}{\underbrace{s+3}} + \frac{1}{\underbrace{s+1}} + 1$$

$$= \frac{2s+4}{(s+3)(s+1)} + 1, \operatorname{Re}\{s\} > -1$$

$$= \frac{2s+4}{s^2+4s+3} + 1, \operatorname{Re}\{s\} > -1$$

$$= \frac{s^2+6s+7}{s^2+4s+3}, \operatorname{Re}\{s\} > -1$$

Controllable canonical state-space realization

Thus,

$$\begin{bmatrix} x_1 \\ x_2 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -3 & -4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t),$$

$$y(t) = \begin{bmatrix} 4 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + 1u(t)$$

Observable canonical state-space realization:

$$H(s) = \frac{2s+4}{s^2+4s+3} + 1 = \frac{2s^{-1}+4s^{-2}}{1+4s^{-1}+3s^{-2}} + 1$$
$$= \frac{1+6s^{-1}+7s^{-2}}{1+4s^{-1}+3s^{-2}}, \operatorname{Re}\{s\} > -1$$

Thus,

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & -3 \\ 1 & -4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 4 \\ 2 \end{bmatrix} u(t),$$

$$y(t) = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + 1u(t)$$

The state-space matrices are: $A = \begin{bmatrix} 0 & -3 \\ 1 & -4 \end{bmatrix}$, $B = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$, $C = \begin{bmatrix} 0 & 1 \end{bmatrix}$, D = 1

(b)
$$\frac{s^2 + 5}{s^3 + 2s^2 + 2s + 1}$$
, Re $\{s\} > -0.5$

Answer:

Controllable canonical state-space realization

We have:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -2 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u(t),$$

$$y(t) = \begin{bmatrix} 5 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + u(t)$$

Observable canonical state-space realization

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 0 & 0 & -1 \\ 1 & 0 & -2 \\ 0 & 1 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 5 \\ 0 \\ 1 \end{bmatrix} u(t),$$

$$y(t) = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

c)
$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 3 \\ 1 \end{bmatrix} u(t), \quad y(t) = \begin{bmatrix} 2 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + u, \text{ causal.}$$

Answer:

Let's compute the transfer function first:

$$\mathcal{H}(s) = C(sI_n - A)^{-1}B + D$$

$$= \begin{bmatrix} 2 & 1 \end{bmatrix} \begin{bmatrix} s+1 & 0 \\ 0 & s+2 \end{bmatrix}^{-1} \begin{bmatrix} 3 \\ 1 \end{bmatrix} + 1 = \begin{bmatrix} 2 & 1 \end{bmatrix} \begin{bmatrix} \frac{1}{s+1} & 0 \\ 0 & \frac{1}{s+2} \end{bmatrix} \begin{bmatrix} 3 \\ 1 \end{bmatrix} + 1$$

$$= \begin{bmatrix} 2 & 1 \end{bmatrix} \begin{bmatrix} \frac{3}{s+1} \\ \frac{1}{s+2} \end{bmatrix} + 1 = \frac{6}{s+1} + \frac{1}{s+2} + 1 = \frac{(7s+13) + (s^2 + 3s + 2)}{s^2 + 3s + 2}$$

$$= \frac{s^2 + 10s + 15}{s^2 + 3s + 2}, \quad \text{Re}\{s\} > -1$$

Controllable canonical state-space realization

Thus,

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t),$$

$$y(t) = \begin{bmatrix} 13 & 7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + u$$

Observable canonical state-space realization.

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & -2 \\ 1 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 13 \\ 7 \end{bmatrix} u(t),$$

$$y(t) = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + u$$

Problem 10.8

- (a) Compute e^A for $A = \begin{bmatrix} 0 & 1 \\ 3 & 2 \end{bmatrix}$.
- (b) Compute the zero-input state and output responses at time $t_1 = 2$ for the causal LTI state-space system:

$$\dot{x} = Ax + Bu$$
$$y = Cx$$

where
$$A = \begin{bmatrix} 0 & 1 \\ 3 & 2 \end{bmatrix}$$
, $B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $C = \begin{bmatrix} 1 & 0 \end{bmatrix}$, with initial state $x(0) = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$.

Consider the causal LTI state-space system

$$\dot{x} = Ax + Bu$$

 $y = Cx$, where $A = \begin{bmatrix} -11 & 1\\ 3 & -9 \end{bmatrix}$, $B = \begin{bmatrix} 2\\ 3 \end{bmatrix}$, $C = \begin{bmatrix} 1 & 1 \end{bmatrix}$.

(a) Is the system minimal? Is it stable? Justify.

Answer:

$$\det\begin{bmatrix} \lambda + 11 & -1 \\ -3 & \lambda + 9 \end{bmatrix} = (\lambda + 11)(\lambda + 9) - 3 = \lambda^2 + 20\lambda + 96$$

$$\Rightarrow \lambda_1 = -12, \lambda_2 = -8$$

The eigenvalues of the A matrix are negative, therefore the system is stable. To answer the question on minimality, we need to compute the transfer function first in (b).

(b) Compute the transfer function $\mathcal{H}(s)$ of the system. Specify its ROC.

$$\mathcal{H}(s) = C(sI_2 - A)^{-1}B$$

$$= \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} s+11 & -1 \\ -3 & s+9 \end{bmatrix}^{-1} \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

$$= \frac{1}{s^2 + 20s + 96} \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} s+9 & 1 \\ 3 & s+11 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

$$= \frac{1}{s^2 + 20s + 96} \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} 2s+21 \\ 3s+39 \end{bmatrix} = \frac{5s+60}{s^2 + 20s + 96}, \quad \text{Re}\{s\} > -8$$

$$= \frac{5(s+12)}{(s+12)(s+8)} = \frac{5}{s+8}, \quad \text{Re}\{s\} > -8$$

The pole is at -8, one of the two eigenvalues: -8 and -12. This state-space system is stable but non-minimal (answer of (a))

(c) Give the state transition matrix $\Phi(t,t_0)$.

Answer:

Two eigenvectors corresponding to $\lambda_1 = -12$, $\lambda_2 = -8$ are $v_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$, $v_2 = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$ so that

$$T = \begin{bmatrix} v_1 & v_2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ -1 & 3 \end{bmatrix}$$
 is diagonalizing. We have

$$\Phi(t,t_0) = e^{A(t-t_0)} = \begin{bmatrix} 1 & 1 \\ -1 & 3 \end{bmatrix} \begin{bmatrix} e^{-12(t-t_0)} & 0 \\ 0 & e^{-8(t-t_0)} \end{bmatrix} \begin{bmatrix} 3 & -1 \\ 1 & 1 \end{bmatrix} \frac{1}{4}$$
$$= \frac{1}{4} \begin{bmatrix} 3e^{-12(t-t_0)} + e^{-8(t-t_0)} & -e^{-12(t-t_0)} + e^{-8(t-t_0)} \\ -3e^{-12(t-t_0)} + 3e^{-8(t-t_0)} & e^{-12(t-t_0)} + 3e^{-8(t-t_0)} \end{bmatrix}$$

(d) Compute the impulse response h(t) of the system using the state transition matrix (matrix exponential).

Answer:

$$h(t) = Ce^{At}Bq(t)$$

$$= \frac{1}{4}\begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} 3e^{-12t} + e^{-8t} & -e^{-12t} + e^{-8t} \\ -3e^{-12t} + 3e^{-8t} & e^{-12t} + 3e^{-8t} \end{bmatrix} \begin{bmatrix} 2 \\ 3 \end{bmatrix} q(t)$$

$$= \frac{1}{4} \begin{bmatrix} 4e^{-8t} & 4e^{-8t} \end{bmatrix} \begin{bmatrix} 2 \\ 3 \end{bmatrix} q(t)$$

$$= 5e^{-8t}q(t)$$

Consider the LTI causal state-space system

$$\dot{x} = Ax + Bu$$
$$y = Cx + Du$$

where $x(t) \in \mathbb{R}^n$, $y(t) \in \mathbb{R}$, $u(t) \in \mathbb{R}$. Show that any state transformation z = Qx, where $Q \in \mathbb{R}^{n \times n}$ is invertible, of the above state-space system keeps the transfer function invariant. This means that there are infinitely many state-space representations of any given proper rational transfer function.