Solutions to Problems in Chapter 1

Problems with Solutions

Problem 1.1

Write the following complex signals in polar form, i.e., in the form $x(t)=r(t) e^{j \theta(t)}$,
$r(t), \theta(t) \in \mathbb{R}, r(t)>0$ for continuous-time signals, $x[n]=r[n] e^{j \theta[n]}, r[n], \theta[n] \in \mathbb{R}, r[n]>0$ for discrete-time signals.
(a) $x(t)=\frac{t}{1+j t}$

Answer:

$$
\begin{aligned}
& x(t)=\frac{t}{1+j t}=\frac{|t|}{\sqrt{t^{2}+1}} e^{j \theta(t)} \\
& \Rightarrow r(t)=\frac{|t|}{\sqrt{t^{2}+1}}, \theta(t)= \begin{cases}\arctan \left(\frac{-t}{1}\right), \quad t \geq 0 \\
\arctan \left(\frac{-t}{1}\right)+\pi, t<0\end{cases}
\end{aligned}
$$

(b) $x[n]=n j e^{n+j}, n>0$

Answer:

$$
\begin{aligned}
& x[n]=n j e^{n+j}=n e^{n} e^{j(1+\pi / 2)}, n>0 \\
& \Rightarrow \quad r[n]=n e^{n}, \theta[n]=(1+\pi / 2)
\end{aligned}
$$

Problem 1.2

Determine if the following systems are: 1. Memoryless, 2. Time-invariant, 3. Linear, 4. Causal,
5. BIBO Stable. Justify your answers.
(a) $y[n]=x[1-n]$

1. Memoryless? No. For example, the output $y[0]=x[1]$ depends on a future value of the input.
2. Time-invariant? No.

$$
\begin{aligned}
y_{1}[n] & =S x[n-N]=x[1-n-N] \\
& \neq x[1-(n-N)]=x[1-n+N)]=y[n-N]
\end{aligned}
$$

3. Linear? Yes. Let $y_{1}[n]:=S x_{1}[n]=x_{1}[1-n], y_{2}[n]:=S x_{2}[n]=x_{2}[1-n]$. Then, the output of the system with $x[n]:=\alpha x_{1}[n]+\beta x_{2}[n]$ is given by:

$$
\begin{aligned}
y & =S x: \\
y[n] & =x[1-n]=\alpha x_{1}[1-n]+\beta x_{2}[1-n] \\
& =\alpha y_{1}[n]+\beta y_{2}[n]
\end{aligned}
$$

4. Causal? No. For example, the output $y[0]=x[1]$ depends on a future value of the input.
5. Stable? Yes. $|x[n]|<B, \forall n \Rightarrow|y[n]|=|x[1-n]|<B, \forall n$.
(b) $y(t)=\frac{x(t)}{1+x(t-1)}$
6. Memoryless? No. The system has memory since at time t, it uses the past value of the input $x(t-1)$.
7. Time-invariant? Yes. $y_{1}(t)=S x(t-T)=\frac{x(t-T)}{1+x(t-1-T)}=y(t-T)$
8. Linear? No. The system S is nonlinear since it does not have the superposition property:

For $x_{1}(t), x_{2}(t), \quad$ let $y_{1}(t)=\frac{x_{1}(t)}{1+x_{1}(t-1)}, \quad y_{2}(t)=\frac{x_{2}(t)}{1+x_{2}(t-1)}$
Define $x(t)=a x_{1}(t)+b x_{2}(t)$.
Then $y(t)=\frac{a x_{1}(t)+b x_{2}(t)}{1+a x_{1}(t-1)+b x_{2}(t-1)} \neq \frac{a x_{1}(t)}{1+x_{1}(t-1)}+\frac{b x_{2}(t)}{1+x_{2}(t-1)}=a y_{1}(t)+b y_{2}(t)$
4. Causal? Yes. The system is causal as the output is a function of the past and current values of the input $x(t-1)$ and $x(t)$ only.
5. Stable? No. For the bounded input $x(t)=-1, \forall t \Rightarrow|y(t)|=\infty$, i.e. the output is unbounded.
(c) $y(t)=t x(t)$

1. Memoryless? Yes. The output at time t depends only on the current value of the input $x(t)$.
2. Time-invariant? No. $y_{1}(t)=S x(t-T)=t x(t-T) \neq(t-T) x(t-T)=y(t-T)$
3. Linear? Yes. Let $y_{1}(t):=S x_{1}(t)=t x_{1}(t), y_{2}(t):=S x_{2}(t)=t x_{2}(t)$. Then,

$$
\begin{aligned}
y(t) & =S\left[a x_{1}(t)+b x_{2}(t)\right]=t\left[a x_{1}(t)+b x_{2}(t)\right] \\
& =a t x_{1}(t)+b t x_{2}(t)=a y_{1}(t)+b y_{2}(t)
\end{aligned}
$$

4. Causal? Yes. The output at time t depends on the present value of the input only.
5. Stable? No. Consider the constant input $x(t)=B \Rightarrow$ for any $K, \exists T$ such that $|y(T)|=|T B|>K$, namely, $T>\frac{K}{|B|}$, i.e., the output is unbounded.
(d) $y[n]=\sum_{k=-\infty}^{0} x[n-k]$
6. Memoryless? No. The output $y[n]$ is computed using all future values of the input.
7. Time-invariant? Yes. $y_{1}[n]=S x[n-N]=\sum_{k=-\infty}^{0} x[n-N-k]=y[n-N]$
8. Linear? Yes. Let $y_{1}[n]:=S x_{1}[n]=\sum_{k=-\infty}^{0} x_{1}[n-k], y_{2}[n]:=S x_{2}[n]=\sum_{k=-\infty}^{0} x_{2}[n-k]$. Then, the output of the system with $x[n]:=\alpha x_{1}[n]+\beta x_{2}[n]$ is given by:

$$
\begin{aligned}
y[n] & =\sum_{k=-\infty}^{0} x[n-k]=\sum_{k=-\infty}^{0} \alpha x_{1}[n-k]+\beta x_{2}[n-k]=\alpha \sum_{k=-\infty}^{0} x_{1}[n-k]+\beta \sum_{k=-\infty}^{0} x_{2}[n-k] \\
& =\alpha y_{1}[n]+\beta y_{2}[n]
\end{aligned}
$$

4. Causal? No. The output $y[n]$ depends on future values of the input $x[n+|k|]$.
5. Stable? No. For the input signal $x[n]=B, \forall n \Rightarrow|y[n]|=\left|\sum_{k=-\infty}^{0} x[n-k]\right|=\left|\sum_{k=-\infty}^{0} B\right|=+\infty$, i.e., the output is unbounded.

Problem 1.3

Find the fundamental periods (T for continuous-time signals, N for discrete-time signals) of the following periodic signals.
(a) $x(t)=\cos (13 \pi t)+2 \sin (4 \pi t)$

Answer:
$x(t+T)=\cos (13 \pi t+13 \pi T)+2 \sin (4 \pi t+4 \pi T)$
will equal $x(t)$ if $\exists k, p \in \mathbb{Z}$ such that $13 \pi T=2 \pi k, 4 \pi T=2 \pi p$,
which yields $T=\frac{2 k}{13}=\frac{p}{2} \Rightarrow \frac{p}{k}=\frac{4}{13}$. The numerator and denominator are coprime (no
common divisor except 1), thus we take $p=4, k=13$ and the fundamental period is $T=\frac{p}{2}=2$.
(b) $x[n]=e^{j 7.31 / \pi n}$

Answer:
$x[n]=e^{j 7.351 \pi n}=e^{j \frac{7351}{1000} \pi n}$, thus the frequency is $\omega_{0}=\frac{7351}{1000} \pi=\frac{7351}{2000} 2 \pi$ and the number 7351 is prime, so the fundamental period is $N=2000$.

Problem 1.4

Sketch the signals $x[n]=u[n+3]-u[n]+0.5^{n} u[n]-0.5^{n-4} u[n-4]$, and
$y[n]=n u[-n]-\delta[n-1]-n u[n-3]+(n-4) u[n-6]$.

Answer:

Signals $x[n]$ and $y[n]$ are sketched in Figure 1.1 and Figure 1.2

Figure 1.1: Signal $x[n]$

Figure 1.2: Signal $y[n]$
(b) Find expressions for the signals shown in Figure 1.3.

Figure 1.3: Plots of continuous-time signals $x(t)$ and $y(t)$

Answer:
$x(t)=\frac{2}{3}(t+3) u(t+3)-\frac{2}{3}(t+3) u(t)-u(t)+u(t-2)+2 \delta(t+1)-\delta(t-3)$
$y(t)=\sum_{k=-\infty}^{\infty} 2(t-3 k) u(t-3 k)-2(t-3 k-1) u(t-3 k-1)-2 u(t-2-3 k)$

Problem 1.5

Properties of even and odd signals.
(a) Show that if $\mathrm{x}[\mathrm{n}]$ is an odd signal, then $\sum_{n=-\infty}^{+\infty} x[n]=0$

Answer:

For an odd signal,

$$
x[n]=-x[n] \Rightarrow x[0]=0 \text { and } \sum_{n=-\infty}^{+\infty} x[n]=x[0]+\sum_{n=1}^{+\infty}(x[n]-x[n])=0
$$

(b) Show that if $x_{1}[n]$ is odd and $x_{2}[n]$ is even, then their product is odd.

Answer:

$$
\begin{aligned}
& x_{1}[n]=x_{1}[-n], \quad x_{2}[n]=-x_{2}[-n] \\
& \Rightarrow \quad x_{1}[-n] x_{2}[-n]=-x_{1}[n] x_{2}[n]
\end{aligned}
$$

(c) Let $x[n]$ be an arbitrary signal with even and odd parts $x_{e}[n]=\operatorname{Ev}\{x[n]\}, \quad x_{o}[n]=\operatorname{Od}\{x[n]\}$.

Show that $\sum_{n=-\infty}^{+\infty} x^{2}[n]=\sum_{n=-\infty}^{+\infty} x_{e}^{2}[n]+\sum_{n=-\infty}^{+\infty} x_{o}{ }^{2}[n]$.

Answer:

$$
\begin{aligned}
\sum_{n=-\infty}^{+\infty} x^{2}[n] & =\sum_{n=-\infty}^{+\infty}\left(x_{e}[n]+x_{o}[n]\right)^{2}=\sum_{n=-\infty}^{+\infty} x_{e}^{2}[n]+2 \underbrace{\sum_{n=-\infty}^{+\infty} x_{e}[n] x_{o}[n]}_{=0}+\sum_{n=-\infty}^{+\infty} x_{o}^{2}[n] \\
& =\sum_{n=-\infty}^{+\infty} x_{e}^{2}[n]+\sum_{n=-\infty}^{+\infty} x_{o}^{2}[n]
\end{aligned}
$$

(d) Similarly, show that $\int_{-\infty}^{+\infty} x^{2}(t) d t=\int_{-\infty}^{+\infty} x_{e}^{2}(t) d t+\int_{-\infty}^{+\infty} x_{o}^{2}(t) d t$.

Answer:

$$
\begin{aligned}
\int_{-\infty}^{+\infty} x^{2}(t) d t & =\int_{-\infty}^{+\infty}\left(x_{e}(t)+x_{o}(t)\right)^{2} d t=\int_{-\infty}^{+\infty} x_{e}^{2}(t) d t+2 \underbrace{\int_{-\infty}^{+\infty} x_{e}(t) x_{o}(t) d t}_{0}+\int_{-\infty}^{+\infty} x_{o}^{2}(t) d t \\
& =\int_{-\infty}^{+\infty} x_{e}^{2}(t) d t+\int_{-\infty}^{+\infty} x_{o}^{2}(t) d t
\end{aligned}
$$

Exercises

Problem 1.6
Write the following complex signals in rectangular form: $x(t)=a(t)+j b(t), a(t), b(t) \in \mathbb{R}$ for continuous-time signals, $x[n]=a[n]+j b[n], a[n], b[n] \in \mathbb{R}$ for discrete-time signals.
(a) $x(t)=e^{(-2+j 3) t}$
(b) $x(t)=e^{-j \pi t} u(t)+e^{(2+j \pi) t} u(-t)$

Problem 1.7

Use the sampling property of the impulse to simplify the following expressions.
(a) $x(t)=e^{-t} \cos (10 t) \delta(t)$

Answer:

$$
x(t)=e^{-t} \cos (10 t) \boldsymbol{\delta}(t)=e^{0} \cos (10 \cdot 0) \boldsymbol{\delta}(t)=\boldsymbol{\delta}(t)
$$

(b) $x(t)=\sin (2 \pi t) \sum_{k=0}^{\infty} \delta(t-k)$

Answer:

$$
\begin{aligned}
x(t) & =\sin (2 \pi t) \sum_{k=0}^{\infty} \delta(t-k)=\sum_{k=0}^{\infty} \sin (2 \pi t) \delta(t-k) \\
& =\sum_{k=0}^{\infty} \sin (2 \pi k) \delta(t-k)=\sum_{k=0}^{\infty} 0 \delta(t-k)=0
\end{aligned}
$$

(c) $x[n]=\cos (0.2 \pi n) \sum_{k=-\infty}^{0} \delta[n-10 k]$

Answer:

$$
\begin{aligned}
x[n] & =\cos (0.2 \pi n) \sum_{k=-\infty}^{0} \delta[n-10 k]=\sum_{k=-\infty}^{0} \cos (0.2 \pi n) \delta[n-10 k] \\
& =\sum_{k=-\infty}^{0} \cos (2 \pi k) \delta[n-10 k]=\sum_{k=-\infty}^{0} \delta[n-10 k]
\end{aligned}
$$

Problem 1.8

Compute the convolution: $\delta(t-T) * e^{-2 t} u(t)=\int_{-\infty}^{\infty} \delta(\tau-T) e^{-2(t-\tau)} u(t-\tau) d \tau$.

Problem 1.9

Write the following complex signals in (i) polar form and (ii) rectangular form.

Polar form: $x(t)=r(t) e^{j \theta(t)}, r(t), \theta(t) \in \mathbb{R}$ for continuous-time signals, $x[n]=r[n] e^{j \theta[n]}, r[n], \theta[n] \in \mathbb{R}$ for discrete-time signals.

Rectangular form: $x(t)=a(t)+j b(t), a(t), b(t) \in \mathbb{R}$ for continuous-time signals, $x[n]=a[n]+j b[n], a[n], b[n] \in \mathbb{R}$ for discrete-time signals.
(a) $x_{1}(t)=j+\frac{t}{1-j}$

Answer:

$$
\begin{aligned}
& x_{1}(t)=j+\frac{t}{1-j}=j+\frac{(1+j) t}{2}=0.5 t+j(1+0.5 t) \\
& \Rightarrow a(t)=0.5 t, \quad b(t)=(1+0.5 t) \\
& x_{1}(t)=\sqrt{0.25 t^{2}+(1+0.5 t)^{2}} e^{j \arctan [(1+0.5 t) / 0.5 t]} \\
& \Rightarrow \quad r_{1}(t)=\sqrt{0.5 t^{2}+t+1}, \quad \theta_{1}(t)=\arctan [(1+0.5 t) / 0.5 t]
\end{aligned}
$$

(b) $x_{2}[n]=j n+e^{j 2 n}$

Answer:

$$
\begin{aligned}
& x_{2}[n]=j n+e^{j 2 n}=\cos (2 n)+j[n+\sin (2 n)] \\
& \Rightarrow a_{2}[n]=\cos (2 n), b_{2}[n]=n+\sin (2 n) \\
& =\sqrt{\cos (2 n)^{2}+[n+\sin (2 n)]^{2}} e^{j \arctan (n+\sin (2 n)) / \cos (2 n)]} \\
& =\sqrt{1+n^{2}+2 n \sin (2 n)} e^{j \arctan (n+\sin (2 n)) / \cos (2 n)]} \\
& \Rightarrow r_{2}[n]=\sqrt{1+n^{2}+2 n \sin (2 n)}, \theta_{2}[n]=j \arctan [(n+\sin (2 n)) / \cos (2 n)]
\end{aligned}
$$

Problem 1.10

Determine whether the following systems are: 1. Memoryless, 2. Time-invariant, 3. Linear,
4. Causal, 5. BIBO Stable. Justify your answers.
(a) $y(t)=\frac{d}{d t} x(t)$, where the time derivative of $x(t)$ is defined as $\frac{d}{d t} x(t):=\lim _{\Delta t \rightarrow 0} \frac{x(t)-x(t-\Delta t)}{\Delta t}$.
(b) $y(t)=\frac{t}{1+x(t-1)}$
(c) $y(t)=2 t x(2 t)$
(d) $y[n]=\sum_{k=-\infty}^{n} x[k-n]$
(e) $y[n]=x[n]+n x[n+1]$
(f) $y[n]=x[n]+x[n-2]$

Problem 1.11

Find the fundamental periods and fundamental frequencies of the following periodic signal.
(a) $x[n]=\cos (0.01 \pi n) e^{j 0.13 \pi n}$

Answer:

$$
x[n]=\cos (0.01 \pi n) e^{j 0.13 \pi n}=0.5 e^{j 0.14 \pi n}+0.5 e^{-j 0.12 \pi n}=0.5 e^{j \frac{7}{100}(2 \pi) n}+0.5 e^{-j \frac{6}{100}(2 \pi) n},
$$

thus $\frac{m_{1}}{N_{1}}=\frac{7}{100}$ for the first term, and $\frac{m_{2}}{N_{2}}=\frac{6}{100}=\frac{3}{50}$ for the second. The fundamental period
(common to both terms) is $N=100$, and the fundamental frequency is $\Omega_{0}=\frac{2 \pi}{100}=\frac{\pi}{50}$.
(b) $x(t)=\sum_{k=-\infty}^{\infty} e^{-(t-2 k)} \cos (4 \pi(t-2 k))[u(t-2 k)-u(t-2 k-1)]$. Sketch this signal.

Answer:

This signal is constructed from a damped cosine term which lasts one second ($k=0$ in the summation) and is repeated every two seconds. Therefore, its fundamental period is $T=2$ seconds and its fundamental frequency is $\omega_{0}=\frac{2 \pi}{T}=\pi$ radians $/ \mathrm{s}$. The signal is sketched below.

