1. Computing robot position

The only information the robot has access to is the number of degrees each wheel has rotated since the beginning of the program. First of all, this information must be used to calculate the heading of the robot. Then, using the robot’s present heading and the wheel rotation information, the robot’s movement in the x-y plane can be determined. 

Any time the robot turns, the wheels spin at different rates. So, at the end of a turn, the total rotation of each of the wheels will be different. The robot’s heading changes by a number of degrees proportional to the difference of the rotations of the two wheels. This can be shown by representing the path as a composition of arcs of circles; the angle subtended by each arc depends only on the difference between arc lengths of arcs of different radii and the radii.
For the displacement of the robot, we care about the distance traveled by the point on the robot directly between the two wheels. This distance will always be the average of the distance traveled by the two wheels. The robot’s change in x and y position will depend on the instantaneous heading of the robot at the moment its center point moves forward.

Instead of measuring the dimensions of the robot and calculating the proportionality constants required to calculate robot rotation and forward displacement, we decided to measure these constants as directly as possible. We determined how much distance was traveled for each degree of rotation of the wheels, and we determined how much the robot rotated for each degree of difference between the two wheels. We did this using the “Watching the brick” tool and a simple NXT program.
	uM_PER_DEGREE      
	480
	480 micrometers forward per degree of wheel rotation

	TURN_PER_DIFF_DEG
	240
	240 millidegrees of robot turn per differential degree


2. Proposed computation algorithm


To process the data and obtain odometry information, we will devise an algorithm that analyzes the path in discrete chunks, at regular intervals. If the time intervals are short enough, then we can assume that the path driven during that time can be reasonably approximated by a simple, easy to analyze path.
[image: image1.emf]θ2 d dR d/2 θ1 dL θ1 θ2 d/2 Δx Δx1 2 Δy2 Δy1



In our algorithm, we break each arc of the path into two straight pieces. The first line segment is angled in the x-y plane at the same angle as the robot’s heading at the beginning of the arc (θ1). The second line segment is angled at the same angle as the robot’s heading at the end of the arc (θ2). Each of the two line segments is half as long as the total distance traveled by the robot in the current arc.

θ2 = θ1 + (θR - θL)*TURN_PER_DIFF_DEG

dL = θL * uM_PER_DEGREE
dR = θR * uM_PER_DEGREE
d = (dL + dR) / 2

∆x1 = (d/2) * -sin(θ1)

∆y1 = (d/2) * cos(θ1) 

∆x2 = (d/2) * -sin(θ2)

∆y2 = (d/2) * cos(θ2)


∆x = ∆x1 + ∆x2

∆y = ∆y1 + ∆y2

As long as the final heading is not too different from the initial heading, the error of this approximation is small. Using a short iteration period assures that this is the case.
2.5 Driving functions

Forward(long distance)

The forward motion function starts by computing the required wheel rotation needed to travel the specified distance. We know from calibration that out tribot moves forward 480 μm for every degree of motor rotation so multiplying that value by the distance we want to travel yields the required motor rotation. We look at the present value of the wheel tachometer, move both wheels forward using OUT_REGMODE_SPEED to maintain a straight heading until we reach the target for motion, then brake. This function does not actually use the odometer, because doing so would require a lot of trigonometric computations, and more complicated code overall.
Rotate(long degrees)

Since the rotation is given in absolute value from the initial angle, we start by substracting the odometer heading reading to the desired orientation in order to get the real rotation needed. If the value is positive, we do a right hand turn and vice versa (following positive angle convention in polar coordinates).

From calibration, we know that a motor needs to rotate 1482 degrees for the tribot to rotate 360 degrees. This value multiplied by the target rotation tells us how much wheel rotation is needed.

When we actually do the rotation, we move one wheel forward and the other backwards such that the center of rotation is in the center of the wheel axel. This way, the center of the robot should not translate, and we should achieve a pure rotation. We continue to rotate the motors in opposite directions until the difference between the two motors since starting rotating is equal to the proper difference which we calculated earlier.

We could have written this function to use the odometer only (with no calls to MotorTachoCount()), but we didn’t have time to test our modifications. As it is, the function properly respects the absolute angle by referring to the global odometer variable “angle” at the beginning of the function.
3. Code

#define ODO_POLL_PERIOD    100

#define uM_PER_DEGREE      480    // calibrated

#define TURN_PER_DIFF_DEG  240    // Calibrated
#define TRAC_ROT           1482   //Calibrated: tracho per 360 rotation

#define COFFEE_BREAK       1000   //time to rest between motions

//The following defines are the constraints imposed by the TA

#define STRAIGHT1   500   //Straight distance 1 (mm)

#define ROTATION1   35    //First rotation  (degrees)

#define STRAIGHT2   700   //Straight Distance 2  (mm)

#define ROTATION2   100   //Second rotation (absolute value in degrees)

long xPos=0, yPos=0;  // units: micrometers | range: +- 2 km

long xPosMM=0, yPosMM=0;

long angle=0;

task odometry() {

  long lastLeftDeg=0,lastRightDeg=0;     // units: degrees
  int deltaLeftDeg, deltaRightDeg;       // units: degrees
  int deltaLeft, deltaRight;   // units: micrometers | range: +- 3cm

  long deltaX, deltaY;         // units: micrometers | range: +- 2km

  long deltaAngle;       // units: millidegrees

  long distance;

  int sine, cosine, lastSine=0, lastCosine=100;

  ResetTachoCount(OUT_BC); 
  TextOut(0,LCD_LINE1,"angle (dg):",true);

  TextOut(0,LCD_LINE3,"y pos (mm):");

  TextOut(0,LCD_LINE4,"y pos (mm):");
  while (true) {

    deltaLeftDeg  = MotorTachoCount(OUT_C)-lastLeft;

    deltaRightDeg = MotorTachoCount(OUT_B)-lastRight; 
    lastLeftDeg = MotorTachoCount(OUT_C);

    lastRightDeg = MotorTachoCount(OUT_B);
    deltaLeft = uM_PER_DEGREE*deltaLeftDeg;

    deltaRight = uM_PER_DEGREE*deltaRightDeg;

    distance =  (deltaLeft+deltaRight)/2;

    deltaAngle = (deltaRightDeg-deltaLeftDeg)*TURN_PER_DIFF_DEG;

    long tempAngle = angle + deltaAngle;

    // keep angle in range [0, 360 000) (in a threadsafe way):
    if (tempAngle >= 360000) {

      angle = tempAngle - 360000;

    } else if (tempAngle < 0) {

      angle = tempAngle + 360000;

    } else {

      angle = tempAngle;

    }

    int angleDeg = angle/1000;

    sine = Sin(angleDeg);

    cosine = Cos(angleDeg);
    // first segment:
    deltaX = (distance*(-lastSine))/100/2;

    deltaY = (distance*lastCosine)/100/2;
    // second segment:
    deltaX += (distance*(-sine))/100/2;

    deltaY += (distance*cosine)/100/2;

    lastSine = sine;

    lastCosine = cosine;

    xPos += deltaX;

    yPos += deltaY;

    xPosMM = xPos/1000;

    yPosMM = yPos/1000; 
    TextOut(70,LCD_LINE1,"   ");

    TextOut(70,LCD_LINE3,"      ");

    TextOut(70,LCD_LINE4,"      ");

    NumOut(70,LCD_LINE1,angle/1000);

    NumOut(70,LCD_LINE3,xPosMM);

    NumOut(70,LCD_LINE4,yPosMM);
    Wait(ODO_POLL_PERIOD);

  }

}

void Forward(long distance) {

  long target;

// We figure out the required tacho change for the given distance

// distance in mm * (1000mm / mm) / (480 um / deg) = degrees rotation

   target = (distance * 1000 / uM_PER_DEGREE) + MotorTachoCount(OUT_B);

        while (MotorTachoCount(OUT_B) < target)

              {OnFwdRegEx(OUT_BC,40, OUT_REGMODE_SPEED, RESET_NONE);}

        OffEx(OUT_BC, RESET_NONE);

}

void Rotate (long degrees) {

  long target, total, wheel_rotation;

       //from odometer; (angle/1000) = heading in degrees

       //TRAC_ROT (1482) calibrated: trachodegrees per 360 rotation

       //Gives total wheel rotation in degrees

       target = degrees - (angle/1000);

 //Defines turn required in robot degrees

       if (target > 0)  
       //Left rotation  (B is the right wheel)

          {

          total = (target * TRAC_ROT)/360;  
      //Gives total wheel trachocount rotation needed

wheel_rotation = MotorTachoCount(OUT_B)-MotorTachoCount(OUT_C) + total;  //Pegs rotation to current trachocount

                    {OnFwdEx(OUT_B, 40, RESET_NONE);}

                    {OnRevEx(OUT_C, 40, RESET_NONE);}

while (MotorTachoCount(OUT_B)-MotorTachoCount(OUT_C) < wheel_rotation);

          OffEx(OUT_BC, RESET_NONE);

          }

       if (target < 0)  //Right rotation  (C is the left wheel)

          {

          total = (target * TRAC_ROT)/360; 
        //Gives total wheel rotation in degrees

wheel_rotation=MotorTachoCount(OUT_B)-(MotorTachoCount(OUT_C) + total);

          OnFwdEx(OUT_C, 40, RESET_NONE);

          OnRevEx(OUT_B, 40, RESET_NONE);

while (MotorTachoCount(OUT_C)-MotorTachoCount(OUT_B) < wheel_rotation);

          OffEx(OUT_BC, RESET_NONE);

          }

}

task main() {

        start odometry;

        Wait(1000);

        Forward(STRAIGHT1); //First forward motion

        Wait(COFFEE_BREAK);

        Rotate(ROTATION1);  //First rotation

        Wait(COFFEE_BREAK);

        Forward(STRAIGHT2); //Second forward motion

        Wait(COFFEE_BREAK);

        Rotate(ROTATION2);  //Second rotation

        Wait(COFFEE_BREAK);

}
4. Results


The tribot was to move 500mm straight, rotate 35 degrees, move 700mm straight then rotate to 100 degrees.

Theoretically, orientation = 100 degrees, x = 500 + 700Cos(35), y = 700Sin(35)
Here is the date we collected

	
	
	Orientation (deg)
	X (mm)
	Y (mm)

	
	Theoretical
	100
	1073.4
	401.5

	
	Odometer
	106
	1085.0
	416.0

	
	Real
	109
	1091.0
	423.0

	Error (%)
	Real/Th
	9.0
	1.6
	5.4

	
	Real/Odom
	2.8
	0.6
	1.7

	
	Odom/Th
	6.0
	1.1
	3.6


5. Discussion

Error sources:


The main sources of error to justify divergence between theoretical and real/odometer values comes form the slow reaction time of the motors when braking and possible slippage on startup.


We can observe that the odometer reads values with less than 3% error in all cases, which means that it is pretty accurate. A good way to reduce the error from theoretical to odometer would be to use a feedback loop during locomotion which would adjust the course of the robot based on divergence between the desired theoretical path and the actual path.

Orientation: 


We can see that our odometer is pretty accurate compared to the real heading. The divergence is greater when comparing with the theoretical value. This is probably due to slow motor reaction time when we applied the breaks. The fact that all our values are overshot compared to the theoretical values reinforces this theory.
Translation:


The error is much greater in the y direction than in the x direction. There are 2 main explanations for that. First, since the robot started its movement pointing in the X+ direction, rotated then moved forward some more, all the Y translation has been done after rotation. This means that any error found in the y component is dependant on the rotational error, whereas the X translation benefited from a straight displacement on startup.

Second, assuming that most of the precision error comes from slippage at startup and slow reaction time, the fact that the Y translation is much smaller that the X translation means that the error in Y is more significant when compared with the total motion. The lengthier X translation effectively “dilutes” the error while the robot is driving in +X for 500mm on startup.

To get a better idea of where the error comes from, we could do a 180 degree rotation then go forward.

We can also mention that when we calibrated the turn ratios for the tribot, motor C had to rotate on average 10 degrees more than motor B for the robot to do a 360 degree rotation. To simplify the code, we averaged the value and used it for both wheels assuming that on a long travel path, the error would mostly even itself out based on a combination of left and right turns. Since on the testing all we did was 2 left rotations, we emphasized this error. In order to reduce the impact of that uneven calibration, we could get the robot to turn left, coast then turn right.  

